Membrane fusion induced by neuronal SNAREs transits through hemifusion

被引:92
作者
Lu, XB
Zhang, F
McNew, JA
Shin, YK [1 ]
机构
[1] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
[2] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA
关键词
D O I
10.1074/jbc.M506862200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synaptic transmission requires the controlled release of neurotransmitter from synaptic vesicles by membrane fusion with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for synaptic membrane fusion. The mechanism by which SNAREs drive membrane fusion is thought to involve a hemifusion intermediate, a condition in which the outer leaflets of two bilayers are combined and the inner leaflets remain intact; however, hemifusion has been observed only as an end point rather than as an intermediate. Here, we examined the kinetics of membrane fusion of liposomes mediated by recombinant neuronal SNAREs using fluorescence assays that monitor both total lipid mixing and inner leaflet mixing. Our results demonstrate that hemifusion is dominant at the early stage of the fusion reaction. Over time, hemifusion transitioned to complete fusion, showing that hemifusion is a true intermediate. We also show that hemifusion intermediates can be trapped, likely as unproductive outcomes, by modulating the surface concentration of the SNARE proteins.
引用
收藏
页码:30538 / 30541
页数:4
相关论文
共 23 条
[1]   The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition [J].
Armstrong, RT ;
Kushnir, AS ;
White, JM .
JOURNAL OF CELL BIOLOGY, 2000, 151 (02) :425-437
[2]   SNARE complex formation is triggered by Ca2+ and drives membrane fusion [J].
Chen, YA ;
Scales, SJ ;
Patel, SM ;
Doung, YC ;
Scheller, RH .
CELL, 1999, 97 (02) :165-174
[3]   Protein-lipid interplay in fusion and fission of biological membranes [J].
Chernomordik, LV ;
Kozlov, MM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :175-207
[4]   The pathway of membrane fusion catalyzed by influenza hemagglutinin: Restriction of lipids, hemifusion, and lipidic fusion pore formation [J].
Chernomordik, LV ;
Frolov, VA ;
Leikina, E ;
Bronk, P ;
Zimmerberg, J .
JOURNAL OF CELL BIOLOGY, 1998, 140 (06) :1369-1382
[5]   LYSOLIPIDS REVERSIBLY INHIBIT CA-2+-DEPENDENT, GTP-DEPENDENT AND PH-DEPENDENT FUSION OF BIOLOGICAL-MEMBRANES [J].
CHERNOMORDIK, LV ;
VOGEL, SS ;
SOKOLOFF, A ;
ONARAN, HO ;
LEIKINA, EA ;
ZIMMERBERG, J .
FEBS LETTERS, 1993, 318 (01) :71-76
[6]   Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis [J].
Han, X ;
Wang, CT ;
Bai, JH ;
Chapman, ER ;
Jackson, MB .
SCIENCE, 2004, 304 (5668) :289-292
[7]   Neurotransmitter release - four years of SNARE complexes [J].
Hanson, PI ;
Heuser, JE ;
Jahn, R .
CURRENT OPINION IN NEUROBIOLOGY, 1997, 7 (03) :310-315
[8]   Membrane fusion [J].
Jahn, R ;
Lang, T ;
Südhof, TC .
CELL, 2003, 112 (04) :519-533
[9]   LIPID-ANCHORED INFLUENZA HEMAGGLUTININ PROMOTES HEMIFUSION, NOT COMPLETE FUSION [J].
KEMBLE, GW ;
DANIELI, T ;
WHITE, JM .
CELL, 1994, 76 (02) :383-391
[10]   Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinase [J].
Kuzmic, P .
ANALYTICAL BIOCHEMISTRY, 1996, 237 (02) :260-273