Note on chaos and diffusion

被引:15
作者
Dettmann, CP [1 ]
Cohen, EGD [1 ]
机构
[1] Rockefeller Univ, New York, NY 10021 USA
关键词
microscopic chaos; Gaussian diffusion; Lorentz gas; wind-tree model; Brownian motion; multiple time correlations; recurrences; probability;
D O I
10.1023/A:1010345417058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using standard definitions of chaos (as positive Kolmogorov-Sinai entropy) and diffusion (that multiple time distribution functions are Gaussian), we show numerically that both chaotic and nonchaotic systems exhibit diffusion. and hence that there is no direct logical connection between the two properties. This extends a previous result for two time distribution functions.
引用
收藏
页码:589 / 599
页数:11
相关论文
共 9 条
[1]   Microscopic chaos and diffusion [J].
Dettmann, CP ;
Cohen, EGD .
JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (3-4) :775-817
[2]   Statistical mechanics - Microscopic chaos from brownian motion? [J].
Dettmann, CP ;
Cohen, EGD ;
van Beijeren, H .
NATURE, 1999, 401 (6756) :875-875
[3]   Experimental evidence for microscopic chaos [J].
Gaspard, P ;
Briggs, ME ;
Francis, MK ;
Sengers, JV ;
Gammons, RW ;
Dorfman, JR ;
Calabrese, RV .
NATURE, 1998, 394 (6696) :865-868
[4]  
GOLDSTEIN S, 1975, LECT NOTE PHYS, V38, P112
[5]   TIME EVOLUTION OF TOTAL DISTRIBUTION FUNCTION OF A 1-DIMENSIONAL SYSTEM OF HARD RODS [J].
LEBOWITZ, JL ;
PERCUS, JK ;
SYKES, J .
PHYSICAL REVIEW, 1968, 171 (01) :224-+
[6]   KINETIC EQUATIONS AND DENSITY EXPANSIONS - EXACTLY SOLVABLE 1-DIMENSIONAL SYSTEM [J].
LEBOWITZ, JL ;
PERCUS, JK .
PHYSICAL REVIEW, 1967, 155 (01) :122-&
[7]  
Norris J.R., 1997, Markov Chains