Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks

被引:163
作者
Delorme, Violaine
Machacek, Matthias
DerMardirossian, Celine
Anderson, Karen L.
Wittmann, Torsten
Hanein, Dorit
Waterman-Storer, Clare
Danuser, Gaudenz
Bokoch, Gary M. [1 ]
机构
[1] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
[3] Burnham Inst Med Res, Program Infect Dis, La Jolla, CA 92037 USA
关键词
D O I
10.1016/j.devcel.2007.08.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella. in response to upstream signals.
引用
收藏
页码:646 / 662
页数:17
相关论文
共 39 条
[1]   A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells [J].
Adams, MC ;
Salmon, WC ;
Gupton, SL ;
Cohan, CS ;
Wittmann, T ;
Prigozhina, N ;
Waterman-Storer, CM .
METHODS, 2003, 29 (01) :29-41
[2]   TECHNIQUES FOR THE PRESERVATION OF 3-DIMENSIONAL STRUCTURE IN PREPARING SPECIMENS FOR THE ELECTRON MICROSCOPE [J].
ANDERSON, TF .
TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1951, 13 (04) :130-134
[3]   Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin [J].
Andrianantoandro, Ernesto ;
Pollard, Thomas D. .
MOLECULAR CELL, 2006, 24 (01) :13-23
[4]   Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J].
Bamburg, JR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :185-230
[5]   ELECTRON-MICROSCOPY OF CRITICAL-POINT DRIED WHOLE CULTURED-CELLS [J].
BUCKLEY, IK ;
PORTER, KR .
JOURNAL OF MICROSCOPY, 1975, 104 (JUL) :107-120
[6]   Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility [J].
Carlier, MF ;
Laurent, V ;
Santolini, J ;
Melki, R ;
Didry, D ;
Xia, GX ;
Hong, Y ;
Chua, NH ;
Pantaloni, D .
JOURNAL OF CELL BIOLOGY, 1997, 136 (06) :1307-1322
[7]   Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion [J].
Chan, AY ;
Bailly, M ;
Zebda, N ;
Segall, JE ;
Condeelis, JS .
JOURNAL OF CELL BIOLOGY, 2000, 148 (03) :531-542
[8]   How is actin polymerization nucleated in vivo? [J].
Condeelis, J .
TRENDS IN CELL BIOLOGY, 2001, 11 (07) :288-293
[9]   Quantitative fluorescent speckle Microscopy of cytoskeleton dynamics [J].
Danuser, Gaudenz ;
Waterman-Storer, Clare M. .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2006, 35 :361-387
[10]   ADF/Cofilin controls cell polarity during fibroblast migration [J].
Dawe, HR ;
Minamide, LS ;
Bamburg, JR ;
Cramer, LP .
CURRENT BIOLOGY, 2003, 13 (03) :252-257