Graphene oxide as surfactant sheets

被引:373
作者
Cote, Laura J. [1 ]
Kim, Jaemyung [1 ]
Tung, Vincent C. [1 ]
Luo, Jiayan [1 ]
Kim, Franklin [1 ]
Huang, Jiaxing [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
amphiphiles; graphene oxide; interfaces; Langmuir-Blodgett technique; monolayers; surfactants; GRAPHITE OXIDE; CARBON; REDUCTION; FILMS; TRANSPARENT; FLUORESCENCE; PERFORMANCE; DISPERSION;
D O I
10.1351/PAC-CON-10-10-25
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite oxide sheet, now referred to as graphene oxide (GO), is the product of chemical oxidation and exfoliation of graphite powders that was first synthesized over a century ago. Interest in this old material has resurged in recent years, especially after the discovery of graphene, as GO is considered a promising precursor for the bulk production of graphene-based materials. GO sheets are single atomic layers that can readily extend up to tens of microns in lateral dimension. Therefore, their structure bridges the typical length scales of both chemistry and materials science. GO can be viewed as an unconventional type of soft material as it carries the characteristics of polymers, colloids, membranes, and as highlighted in this review, amphiphiles. GO has long been considered hydrophilic due to its excellent water dispersity, however, our recent work revealed that GO sheets are actually amphiphilic with an edge-to-center distribution of hydrophilic and hydrophobic domains. Thus, GO can adhere to interfaces and lower interfacial energy, acting as surfactant. This new property insight helps to better understand GO's solution properties which can inspire novel material assembly and processing methods such as for fabricating thin films with controllable microstructures and separating GO sheets of different sizes. In addition, GO can be used as a surfactant sheet to emulsify organic solvents with water and disperse insoluble materials such as graphite and carbon nanotubes (CNTs) in water, which opens up opportunities for creating functional hybrid materials of graphene and other pi-conjugated systems.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 51 条
  • [1] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [2] Stabilization of individual carbon nanotubes in aqueous solutions
    Bandyopadhyaya, R
    Nativ-Roth, E
    Regev, O
    Yerushalmi-Rozen, R
    [J]. NANO LETTERS, 2002, 2 (01) : 25 - 28
  • [3] Evaluation of solution-processed reduced graphene oxide films as transparent conductors
    Becerril, Hdctor A.
    Mao, Jie
    Liu, Zunfeng
    Stoltenberg, Randall M.
    Bao, Zhenan
    Chen, Yongsheng
    [J]. ACS NANO, 2008, 2 (03) : 463 - 470
  • [4] Brodie B. C., 1859, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
  • [5] Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials
    Compton, Owen C.
    Nguyen, SonBinh T.
    [J]. SMALL, 2010, 6 (06) : 711 - 723
  • [6] Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite
    Cote, Laura J.
    Cruz-Silva, Rodolfo
    Huang, Jiaxing
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (31) : 11027 - 11032
  • [7] Langmuir-Blodgett Assembly of Graphite Oxide Single Layers
    Cote, Laura J.
    Kim, Franklin
    Huang, Jiaxing
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) : 1043 - 1049
  • [8] COTE LJ, 2010, SOFT MATTER, DOI DOI 10.1039/C1030SM00667J
  • [9] LAMELLAR COMPOUNDS OF GRAPHITE
    CROFT, RC
    [J]. QUARTERLY REVIEWS, 1960, 14 (01): : 1 - 45
  • [10] CROFT RC, 2006, J PHYS CHEM B, V110, P8535