The C-elegans TGF-β dauer pathway regulates longevity via insulin signaling

被引:184
作者
Shaw, Wendy M.
Luo, Shijing
Landis, Jessica
Ashraf, Jasmine
Murphy, Coleen T. [1 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
关键词
D O I
10.1016/j.cub.2007.08.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Previous genetic evidence suggested that the C. elegrans TGF-beta Dauer pathway is responsible solely for the regulation of dauer formation, with no role in longevity regulation, whereas the insulin/IGF-1 signaling (IIS) pathway regulates both dauer formation and longevity. Results: We have uncovered a significant longevity-regulating activity by the TGF-beta Dauer pathway that is masked by an egg-laying (Egl) phenotype; mutants in the pathway display up to 2-fold increases in life span. The expression profiles of adult TGF-beta mutants overlap significantly with IIS pathway profiles: Adult TGF-beta mutants regulate the transcription of many DAF-16-regulated genes, including genes that regulate life span, the two pathways share enriched Gene Ontology categories, and a motif previously associated with DAF-16-regulated transcription (the DAE, or DAF-16-associated element) is overrepresented in the promoters of TGF-beta regulated genes. The TGF-beta Dauer pathway's regulation of longevity appears to be mediated at least in part through insulin interactions with the IIS pathway and the regulation of DAF-16 localization. Conclusions: Together, our results suggest there are TGF-beta-specific downstream targets and functions, but that the TGF-beta and IIS pathways might be more tightly linked in the regulation of longevity than has been previously appreciated.
引用
收藏
页码:1635 / 1645
页数:11
相关论文
共 33 条
[1]  
BRENNER S, 1974, GENETICS, V77, P71
[2]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[3]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[4]   Rates of behavior and aging specified by mitochondrial function during development [J].
Dillin, A ;
Hsu, AL ;
Arantes-Oliveira, NA ;
Lehrer-Graiwer, J ;
Hsin, H ;
Fraser, AG ;
Kamath, RS ;
Ahringer, J ;
Kenyon, C .
SCIENCE, 2002, 298 (5602) :2398-2401
[5]   Timing requirements for insulin/IGF-1 signaling in C-elegans [J].
Dillin, A ;
Crawford, DK ;
Kenyon, C .
SCIENCE, 2002, 298 (5594) :830-834
[6]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[7]   Functional genomic analysis of C-elegans chromosome I by systematic RNA interference [J].
Fraser, AG ;
Kamath, RS ;
Zipperlen, P ;
Martinez-Campos, M ;
Sohrmann, M ;
Ahringer, J .
NATURE, 2000, 408 (6810) :325-330
[8]   A SIMPLE METHOD FOR MAINTAINING LARGE, AGING POPULATIONS OF CAENORHABDITIS-ELEGANS [J].
GANDHI, S ;
SANTELLI, J ;
MITCHELL, DH ;
STILES, JW ;
RAOSANADI, D .
MECHANISMS OF AGEING AND DEVELOPMENT, 1980, 12 (02) :137-150
[9]   A systematic RNAi screen for longevity genes in C-elegans [J].
Hamilton, B ;
Doug, YQ ;
Shindo, M ;
Liu, WY ;
Odell, I ;
Ruvkun, G ;
Lee, SS .
GENES & DEVELOPMENT, 2005, 19 (13) :1544-1555
[10]   New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen [J].
Hansen, M ;
Hsu, AL ;
Dillin, A ;
Kenyon, C .
PLOS GENETICS, 2005, 1 (01) :119-128