Quantum automata and algebraic groups

被引:33
作者
Derksen, H
Jeandel, E
Koiran, P
机构
[1] Ecole Normale Super Lyon, Lab Informat Parallelisme, F-69364 Lyon, France
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
quantum automata; probabilistic automata; undecidability; algebraic groups; algebraic geometry;
D O I
10.1016/j.jsc.2004.11.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that several problems which are known to be undecidable for probabilistic automata become decidable for quantum finite automata. Our main tool is an algebraic result of independent interest: we give an algorithm which, given a finite number of invertible matrices, computes the Zariski closure of the group generated by these matrices. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 31 条
[1]  
[Anonymous], 2002, ENCY MATH SCI
[2]  
Babai L., 1993, Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation. ISSAC '93, P117, DOI 10.1145/164081.164104
[3]   On the combinatorial and algebraic complexity of quantifier elimination [J].
Basu, S ;
Pollack, R ;
Roy, MF .
JOURNAL OF THE ACM, 1996, 43 (06) :1002-1045
[4]  
Becker T., 1993, GROBNER BASES, V141
[5]   Analogies and differences between quantum and stochastic automata [J].
Bertoni, A ;
Carpentieri, M .
THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) :69-81
[6]  
Bertoni A., 1975, GI 4 JAHRESTAGUNG LE, V26, P107
[7]  
Bertoni A., 1977, Automata, Languages and Programming, V52, P87
[8]  
BEUKERS F, 1992, NUMBER THEORY PHYS
[9]  
BLONDEL V, 2003, THEORY COMPUTING SYS, V36, P283
[10]  
BLONDEL V, UNPUB SIAM J COMPUTI