Quantum automata and algebraic groups

被引:33
作者
Derksen, H
Jeandel, E
Koiran, P
机构
[1] Ecole Normale Super Lyon, Lab Informat Parallelisme, F-69364 Lyon, France
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
quantum automata; probabilistic automata; undecidability; algebraic groups; algebraic geometry;
D O I
10.1016/j.jsc.2004.11.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that several problems which are known to be undecidable for probabilistic automata become decidable for quantum finite automata. Our main tool is an algebraic result of independent interest: we give an algorithm which, given a finite number of invertible matrices, computes the Zariski closure of the group generated by these matrices. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 31 条
[11]   An algorithm for computing the integral closure [J].
De Jong, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1998, 26 (03) :273-277
[12]  
Eisenbud D., 1995, Commutative Algebra with a View Toward Algebraic Geometry, V150
[13]   Derivations and radicals of polynomial ideals over fields of arbitrary characteristic [J].
Fortuna, E ;
Gianni, P ;
Trager, B .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (05) :609-625
[14]  
Ge G., 1993, THESIS U CALIFORNIA
[15]   Deciding finiteness for matrix semigroups over function fields over finite fields - A note on a paper by Rockmore, Tan, and Beals [J].
Ivanyos, G .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 124 (1) :185-188
[16]  
JEANDEL E, 2002, THESIS ECOLE NORMALE
[17]  
KAPLANSKY I, 1972, FIELD RINGS
[18]   The calculation of radical ideals in positive characteristic [J].
Kemper, G .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (03) :229-238
[19]   On the power of quantum finite state automata [J].
Kondacs, A ;
Watrous, J .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :66-75
[20]  
Masser D.W., 1988, NEW ADV TRANSCENDENC, P248