The modification of MoO3 nanoparticles supported on mesoporous SBA-15:: characterization using X-ray scattering, N2 physisorption, transmission electron microscopy, high-angle annular darkfield technique, Raman and XAFS spectroscopy

被引:37
作者
Huang, Zhida
Bensch, Wolfgang
Sigle, Wilfried
van Aken, Peter A.
Kienle, Lorenz
Vitoya, Tonya
Modrow, Hartwig
Ressler, Thorsten
机构
[1] Univ Kiel, Inst Anorgan Chem, D-24098 Kiel, Germany
[2] Max Planck Inst Met Res, D-70506 Stuttgart, Germany
[3] Max Planck Inst Festkorperforsch, D-70506 Stuttgart, Germany
[4] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[5] Tech Univ Berlin, Inst Chem, Fachgrp Anorgan & Analyt Chem, D-10623 Berlin, Germany
关键词
D O I
10.1007/s10853-007-2173-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
MoO3 was dispersed onto mesoporous SBA-15 by using ammonium heptamolybdate as MoO3 source. The formation of MoO3 was carried out by heating the loaded material to 500 degrees C for 3 h in air. Below 13 wt% Mo loading, no reflections of MoO3 occur in the X-ray powder patterns and even for high MoO3 contents, the intensities of the reflections are much lower than expected for fully crystalline material. A detailed XAFS analysis reveals that at low Mo contents, the metastable hexagonal modification of MoO3 is formed despite the high calcination temperature of 500 degrees C. It is highly likely that the nanosize of the particles and the interaction between MoO3 and SBA-15 stabilize the metastable modification of the material. Nitrogen physisorption experiments show the typical type-IV isotherms indicating that the mesoporosity of the materials is preserved despite the large amount of MoO3. Transmission electron micrographs demonstrate the presence of MoO3 inside the SBA-15 support. The Raman spectra display a remarkable size-dependent intensity loss and several features give evidences for a bond formation between nano-sized MoO3 particles and the silica support. Moreover, the spectroscopic details suggest the formation of ( MoO3)(n) oligomers.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 47 条
[1]  
[Anonymous], 1972, PURE APPL CHEM, V31
[2]   Thermal spreading of MoO3 onto silica supports [J].
Braun, S ;
Appel, LG ;
Camorim, VL ;
Schmal, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (28) :6584-6590
[3]  
Brieler FJ, 2002, CHEM-EUR J, V8, P185, DOI 10.1002/1521-3765(20020104)8:1<185::AID-CHEM185>3.0.CO
[4]  
2-L
[5]   Formation of Zn1-xMnxS nanowires within mesoporous silica of different pore sizes [J].
Brieler, FJ ;
Grundmann, P ;
Fröba, M ;
Chen, LM ;
Klar, PJ ;
Heimbrodt, W ;
von Nidda, HAK ;
Kurz, T ;
Loidl, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (03) :797-807
[6]   OXYGEN-CHEMISORPTION AND LASER RAMAN-SPECTROSCOPY OF UNSUPPORTED AND SILICA-SUPPORTED MOLYBDENUM OXIDE [J].
DESIKAN, AN ;
HUANG, L ;
OYAMA, ST .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (24) :10050-10056
[7]   Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts [J].
Dhar, GM ;
Kumaran, GM ;
Kumar, M ;
Rawat, KS ;
Sharma, LD ;
Raju, BD ;
Rao, KSR .
CATALYSIS TODAY, 2005, 99 (3-4) :309-314
[8]   Fe2O3 nanoparticles within mesoporous MCM-48 silica:: In situ formation and characterization [J].
Fröba, M ;
Köhn, R ;
Bouffaud, G ;
Richard, O ;
van Tendeloo, G .
CHEMISTRY OF MATERIALS, 1999, 11 (10) :2858-2865
[9]   Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films [J].
Fukuoka, A ;
Araki, H ;
Sakamoto, Y ;
Sugimoto, N ;
Tsukada, H ;
Kumai, Y ;
Akimoto, Y ;
Ichikawa, M .
NANO LETTERS, 2002, 2 (07) :793-795
[10]   Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase [J].
Gao, F ;
Lu, QY ;
Liu, XY ;
Yan, YS ;
Zhao, DY .
NANO LETTERS, 2001, 1 (12) :743-748