The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells

被引:118
作者
Djordjevic, T
Pogrebniak, A
BelAiba, RS
Bonello, S
Wotzlaw, C
Acker, H
Hess, J
Görlach, A
机构
[1] Tech Univ Munich, Clin Pediat Cardiol & Cogenital Heart Dis, German Heart Ctr Munich, D-80636 Munich, Germany
[2] Max Planck Inst Mol Physiol, D-44139 Dortmund, Germany
关键词
NADPH oxidase; endothelial cells; reactive oxygen species; thrombin; endothelial dysfunction; p22phox; free radicals;
D O I
10.1016/j.freeradbiomed.2004.09.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:616 / 630
页数:15
相关论文
共 44 条
[1]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[2]   Expression of NADH/NADPH oxidase p22phox in human coronary arteries [J].
Azumi, H ;
Inoue, N ;
Takeshita, S ;
Rikitake, Y ;
Kawashima, S ;
Hayashi, Y ;
Itoh, H ;
Yokoyama, M .
CIRCULATION, 1999, 100 (14) :1494-1498
[3]   The neutrophil NADPH oxidase [J].
Babior, BM ;
Lambeth, JD ;
Nauseef, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :342-344
[4]   Two novel proteins activate superoxide generation by the NADPH oxidase NOX1 [J].
Bánfi, B ;
Clark, RA ;
Steger, K ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (06) :3510-3513
[5]   Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells [J].
Bayraktutan, U ;
Draper, N ;
Lang, D ;
Shah, AM .
CARDIOVASCULAR RESEARCH, 1998, 38 (01) :256-262
[6]   Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells [J].
BelAiba, RS ;
Djordjevic, T ;
Bonello, S ;
Flügel, D ;
Hess, J ;
Kietzmann, T ;
Görlach, A .
BIOLOGICAL CHEMISTRY, 2004, 385 (3-4) :249-257
[7]   Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging [J].
Bestvater, F ;
Spiess, E ;
Stobrawa, G ;
Hacker, M ;
Feurer, T ;
Porwol, T ;
Berchner-Pfannschmidt, U ;
Wotzlaw, C ;
Acker, H .
JOURNAL OF MICROSCOPY, 2002, 208 (02) :108-115
[8]   NADPH oxidases: not just for leukocytes anymore! [J].
Bokoch, GM ;
Knaus, UG .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (09) :502-508
[9]  
Brandes RP, 2001, THROMB HAEMOSTASIS, V85, P1104
[10]   Increased superoxide generation is associated with pulmonary hypertension in fetal lambs - A role for NADPH oxidase [J].
Brennan, LA ;
Steinhorn, RH ;
Wedgwood, S ;
Mata-Greenwood, E ;
Roark, EA ;
Russell, JA ;
Black, SM .
CIRCULATION RESEARCH, 2003, 92 (06) :683-691