High-throughput computational screening of thermal conductivity, Debye temperature, and Gruneisen parameter using a quasiharmonic Debye model

被引:247
作者
Toher, Cormac [1 ]
Plata, Jose J. [1 ]
Levy, Ohad [1 ]
de Jong, Maarten [2 ]
Asta, Mark [2 ]
Nardelli, Marco Buongiorno [3 ,4 ]
Curtarolo, Stefano [5 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ N Texas, Dept Phys, Denton, TX 76203 USA
[4] Univ N Texas, Dept Chem, Denton, TX 76203 USA
[5] Duke Univ, Durham, NC 27708 USA
关键词
THERMOELECTRIC PROPERTIES; IRREVERSIBLE-PROCESSES; TRANSPORT-PROPERTIES; HEAT; SEMICONDUCTORS; AFLOWLIB.ORG; SOLIDS; INDIUM; PURE;
D O I
10.1103/PhysRevB.90.174107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quasiharmonic Debye approximation has been implemented within the AFLOW and Materials Project frameworks for high-throughput computational materials science (Automatic Gibbs Library, AGL), in order to calculate thermal properties such as the Debye temperature and the thermal conductivity of materials. We demonstrate that the AGL method, which is significantly cheaper computationally compared to the fully ab initio approach, can reliably predict the ordinal ranking of the thermal conductivity for several different classes of semiconductor materials. In particular, a high Pearson (i.e., linear) correlation is obtained between the experimental and AGL computed values of the lattice thermal conductivity for a set of 75 compounds including materials with cubic, hexagonal, rhombohedral, and tetragonal symmetry.
引用
收藏
页数:14
相关论文
共 66 条
[1]   DEBYE TEMPERATURES AND COHESIVE PROPERTIES [J].
ABRAHAMS, SC ;
HSU, FSL .
JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (03) :1162-1165
[2]   ZERO-POINT AND ISOTOPE SHIFTS - RELATION TO THERMAL SHIFTS [J].
ALLEN, PB .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1994, 70 (03) :527-534
[3]   Measurement of thermal transport properties with an improved transient plane source technique [J].
Anis-ur-Rehman, M ;
Maqsood, A .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2003, 24 (03) :867-883
[4]  
BEASLEY JD, 1994, APPL OPTICS, V33, P1000, DOI 10.1364/AO.33.001000
[5]   Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 [J].
Bjerg, Lasse ;
Iversen, Bo B. ;
Madsen, Georg K. H. .
PHYSICAL REVIEW B, 2014, 89 (02)
[6]   GIBBS:: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J].
Blanco, MA ;
Francisco, E ;
Luaña, V .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 158 (01) :57-72
[7]  
Blanco MA, 1996, J MOL STRUC-THEOCHEM, V368, P245, DOI 10.1016/S0166-1280(96)90571-0
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   SPECIFIC-HEAT, DEBYE TEMPERATURE, AND RELATED PROPERTIES OF COMPOUND SEMICONDUCTORS AIIBIVC2V [J].
BOHMHAMMEL, K ;
DEUS, P ;
SCHNEIDER, HA .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 65 (02) :563-569
[10]   SPECIFIC-HEAT, DEBYE TEMPERATURE, AND RELATED PROPERTIES OF CHALCOPYRITE SEMICONDUCTING COMPOUNDS CUGASE2, CUGATE2, AND CUINTE2 [J].
BOHMHAMMEL, K ;
DEUS, P ;
KUHN, G ;
MOLLER, W .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1982, 71 (02) :505-510