Fractal to nonfractal phase transition in the dielectric breakdown model

被引:23
作者
Hastings, MB [1 ]
机构
[1] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.87.175502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent renormalization group prediction of an upper critical eta (c) = 4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.
引用
收藏
页码:175502 / 175502
页数:4
相关论文
共 19 条
[1]   FRACTAL DIMENSIONALITY FOR THE ETA-MODEL [J].
AMITRANO, C .
PHYSICAL REVIEW A, 1989, 39 (12) :6618-6620
[2]  
[Anonymous], 1961, P 4 BERK S MATH STAT
[3]  
BRADY RM, 1984, NATURE, V309, P225, DOI 10.1038/309225a0
[4]   Diffusion limited aggregation and iterated conformal maps [J].
Davidovitch, B ;
Hentschel, HGE ;
Olami, Z ;
Procaccia, I ;
Sander, LM ;
Somfai, E .
PHYSICAL REVIEW E, 1999, 59 (02) :1368-1378
[5]   Convergent calculation of the asymptotic dimension of diffusion limited aggregates: Scaling and renormalization of small clusters [J].
Davidovitch, B ;
Levermann, A ;
Procaccia, I .
PHYSICAL REVIEW E, 2000, 62 (05) :R5919-R5922
[6]   THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH [J].
ERZAN, A ;
PIETRONERO, L ;
VESPIGNANI, A .
REVIEWS OF MODERN PHYSICS, 1995, 67 (03) :545-604
[7]   SELF-AFFINE NATURE OF DIELECTRIC-BREAKDOWN MODEL CLUSTERS IN A CYLINDER [J].
EVERTSZ, C .
PHYSICAL REVIEW A, 1990, 41 (04) :1830-1842
[8]   MORPHOLOGY AND MICROSTRUCTURE IN ELECTROCHEMICAL DEPOSITION OF ZINC [J].
GRIER, D ;
BENJACOB, E ;
CLARKE, R ;
SANDER, LM .
PHYSICAL REVIEW LETTERS, 1986, 56 (12) :1264-1267
[9]   DIFFUSION-LIMITED AGGREGATION AS BRANCHED GROWTH [J].
HALSEY, TC .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1228-1231
[10]   Laplacian growth as one-dimensional turbulence [J].
Hastings, MB ;
Levitov, LS .
PHYSICA D, 1998, 116 (1-2) :244-252