Diffusion limited aggregation and iterated conformal maps

被引:64
作者
Davidovitch, B [1 ]
Hentschel, HGE
Olami, Z
Procaccia, I
Sander, LM
Somfai, E
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[3] Univ Michigan, Harrison M Randall Lab Phys, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 02期
关键词
D O I
10.1103/PhysRevE.59.1368
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The creation of fractal clusters by diffusion limited aggregation (DLA) is studied by using iterated stochastic conformal maps following the method proposed recently by Hastings and Levitov. The object of interest is the function Phi((n)) which conformally maps the exterior of the unit circle to the exterior of an n-particle DLA. The map Phi((n)) is obtained from rr stochastic iterations of a function phi that maps the unit circle to the unit circle with a bump. The scaling properties usually studied in the literature on DLA appear in a new light using this language. The dimension of the cluster is determined by the linear coefficient in the Laurent expansion of Phi((n)), which asymptotically becomes a deterministic function of n. We find new relationships between the generalized dimensions of the harmonic measure and the scaling behavior of the Laurent coefficients.
引用
收藏
页码:1368 / 1378
页数:11
相关论文
共 16 条
  • [1] LARGE-SCALE LATTICE EFFECT IN DIFFUSION-LIMITED AGGREGATION
    BALL, RC
    BRADY, RM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : L809 - &
  • [2] BRADY RM, 1984, NATURE, V309, P225, DOI 10.1038/309225a0
  • [3] Duren P. L., 1983, Univalent functions
  • [4] THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH
    ERZAN, A
    PIETRONERO, L
    VESPIGNANI, A
    [J]. REVIEWS OF MODERN PHYSICS, 1995, 67 (03) : 545 - 604
  • [5] MORPHOLOGY AND MICROSTRUCTURE IN ELECTROCHEMICAL DEPOSITION OF ZINC
    GRIER, D
    BENJACOB, E
    CLARKE, R
    SANDER, LM
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (12) : 1264 - 1267
  • [6] FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS
    HALSEY, TC
    JENSEN, MH
    KADANOFF, LP
    PROCACCIA, I
    SHRAIMAN, BI
    [J]. PHYSICAL REVIEW A, 1986, 33 (02): : 1141 - 1151
  • [7] DIFFUSION-LIMITED AGGREGATION AS BRANCHED GROWTH
    HALSEY, TC
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1228 - 1231
  • [8] SCALING STRUCTURE OF THE SURFACE-LAYER OF DIFFUSION-LIMITED AGGREGATES
    HALSEY, TC
    MEAKIN, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (08) : 854 - 857
  • [9] Laplacian growth as one-dimensional turbulence
    Hastings, MB
    Levitov, LS
    [J]. PHYSICA D, 1998, 116 (1-2): : 244 - 252
  • [10] Renormalization theory of stochastic growth
    Hastings, MB
    [J]. PHYSICAL REVIEW E, 1997, 55 (01): : 135 - 152