Percolation on dual lattices with k-fold symmetry

被引:11
作者
Bollobas, Bela [1 ,2 ]
Riordan, Oliver [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
plane; percolation; critical probability;
D O I
10.1002/rsa.20205
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Zhang found a simple, elegant argument deducing the nonexistence of an infinite open cluster in certain lattice percolation models (for example, p = 1/2 bond percolation on the square lattice) from general results on the uniqueness of an infinite open cluster when it exists; this argument requires some symmetry. Here we show that a simple modification of Zhang's argument requires only two-fold (or three-fold) symmetry, proving that the critical probabilities for percolation on dual planar lattices with such symmetry sum to 1. Like Zhang's argument, our extension applies in many contexts; in particular, it enables us to answer a question of Grimmett concerning the anisotropic random cluster model on the triangular lattice. (c) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 18 条
[1]   SHARPNESS OF THE PHASE-TRANSITION IN PERCOLATION MODELS [J].
AIZENMAN, M ;
BARSKY, DJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (03) :489-526
[2]  
AIZENMAN M, 1987, PERCOLATION THEORY E, P13
[3]  
[Anonymous], 1982, PERCOLATION THEORY M
[4]  
Bollobas B., 2006, PERCOLATION
[5]   A short proof of the Harris-Kesten theorem [J].
Bollobas, Bela ;
Riordan, Oliver .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :470-484
[6]   DENSITY AND UNIQUENESS IN PERCOLATION [J].
BURTON, RM ;
KEANE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :501-505
[7]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[8]   The stochastic random-cluster process and the uniqueness of random-cluster measures [J].
Grimmett, G .
ANNALS OF PROBABILITY, 1995, 23 (04) :1461-1510
[9]  
Grimmett G., 1999, PERCOLATION
[10]  
Grimmett G., 1989, Percolation