A short proof of the Harris-Kesten theorem

被引:28
作者
Bollobas, Bela [1 ]
Riordan, Oliver
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[3] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
基金
美国国家科学基金会;
关键词
D O I
10.1112/S002460930601842X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of the fundamental result that the critical probability for bond percolation in the planar square lattice Z(2) is equal to 1/2. The lower bound was proved by Harris, who showed in 1960 that percolation does not occur at p = 1/2. The other, more difficult, bound was proved by Kesten, who showed in 1980 that percolation does occur for any p > 1/2.
引用
收藏
页码:470 / 484
页数:15
相关论文
共 23 条
[1]   INEQUALITY FOR WEIGHTS OF 2 FAMILIES OF SETS, THEIR UNIONS AND INTERSECTIONS [J].
AHLSWEDE, R ;
DAYKIN, DE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (03) :183-185
[2]  
AIZENMAN M, 1983, COMMUN MATH PHYS, V92, P19, DOI 10.1007/BF01206313
[3]   Continuum percolation with steps in the square or the disc [J].
Balister, P ;
Bollobás, B ;
Walters, M .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (04) :392-403
[4]  
BOLLOBAS B, IN PRESS RANDOM STRU
[5]  
BOLLOBAS B, 2005, PROBAB THEORY RE DEC
[6]   THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES [J].
BOURGAIN, J ;
KAHN, J ;
KALAI, G ;
KATZNELSON, Y ;
LINIAL, N .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :55-64
[7]  
Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680]
[8]  
CHAYES JT, 1986, CRITICAL PHENOMENA 2
[9]  
CHAYES JT, 1986, CRITICAL PHENOMENA R, P1001
[10]   Every monotone graph property has a sharp threshold [J].
Friedgut, E ;
Kalai, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (10) :2993-3002