Electric-field-tunable electronic properties of graphene quantum dots

被引:23
作者
Chen, R. B. [2 ]
Chang, C. P. [1 ]
Lin, M. F. [3 ]
机构
[1] Tainan Univ Technol, Ctr Gen Educ, Tainan 710, Taiwan
[2] Natl Kaohsiung Marine Univ, Ctr Gen Studies, Kaohsiung, Taiwan
[3] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
关键词
Graphene quantum dot; Electronic properties; Electric field; CARBON NANOTUBES;
D O I
10.1016/j.physe.2009.12.012
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The tight-binding method is employed to investigate the electronic properties of a square graphene quantum dot subject to an in-plane electric field (F). The electronic properties are strongly modified by tuning the field strength or altering the field direction. F will change state energies, alter energy gaps, and induce energy gap modulations. State energies show oscillatory behavior with the change of the field strength. The oscillating amplitude and period are further modulated by the change of the field direction. The field-orientation-dependent electronic properties originate in the geometrical anisotropy of the square graphene quantum dot. Moreover, the density of states (DOS), exhibiting many discrete peaks, directly reveals the characteristic of the electric-field-tunable electronic properties. The number and frequencies of DOS peaks are significantly dependent on the field strength and direction. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2812 / 2815
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1998, Physical Properties of Carbon Nanotubes
[2]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[3]   Electronic and optical properties of a nanographite ribbon in an electric field [J].
Chang, CP ;
Huang, YC ;
Lu, CL ;
Ho, JH ;
Li, TS ;
Lin, MF .
CARBON, 2006, 44 (03) :508-515
[4]   Electronic and optical properties of finite carbon nanotubes in an electric field [J].
Chen, R. B. ;
Lee, C. H. ;
Chang, C. P. ;
Lin, M. F. .
NANOTECHNOLOGY, 2007, 18 (07)
[5]   Eigenstates and transmission coefficients of finite-sized carbon nanotubes [J].
Compernolle, S ;
Chibotaru, L ;
Ceulemans, A .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (05) :2854-2873
[6]   h/e magnetic flux modulation of the energy gap in nanotube quantum dots [J].
Coskun, UC ;
Wei, TC ;
Vishveshwara, S ;
Goldbart, PM ;
Bezryadin, A .
SCIENCE, 2004, 304 (5674) :1132-1134
[7]  
Kelly B.T., 1981, PHYS GRAPHITE APPL S
[8]   Subband mixing rules in circumferentially perturbed carbon nanotubes: Effects of transverse electric fields [J].
Kim, YH ;
Chang, KJ .
PHYSICAL REVIEW B, 2001, 64 (15)
[9]   Electronic properties of zero-dimensional finite-sized nanographene [J].
Li, T. S. ;
Chang, S. C. ;
Chuang, Y. C. ;
Wu, Kelan H. J. ;
Lin, M. F. .
PHYSICA B-CONDENSED MATTER, 2009, 404 (02) :305-309
[10]   Carbon nanotube based magnetic tunnel junctions [J].
Mehrez, H ;
Taylor, J ;
Guo, H ;
Wang, J ;
Roland, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2682-2685