Central extensions and realizations of one-dimensional Galilean systems and quantization

被引:6
作者
Martin, MA [1 ]
delOlmo, MA [1 ]
机构
[1] UNIV VALLADOLID,DEPT FIS TEOR,E-47011 VALLADOLID,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 03期
关键词
D O I
10.1088/0305-4470/29/3/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unitary irreducible realizations (representations up to a factor) of the maximal non-trivial central extension of the (1 + 1) Galilei group, (G) over bar(1 + 1), are obtained via the linear unitary irreducible representations of its maximal non-trivial central extension, G double over bar(1 + 1). As an application we construct the Stratonovich-Weyl correspondence, which allows Moyal quantization of classical systems, for two cases of great physical interest: a system in a external variable force field and a variable-mass system.
引用
收藏
页码:689 / 707
页数:19
相关论文
共 20 条
[1]  
ARRATIA O, 1994, QUANTIZATION AND INFINITE-DIMENSIONAL SYSTEMS, P147
[2]   MOYAL QUANTIZATION OF 2 + 1-DIMENSIONAL GALILEAN SYSTEMS [J].
BALLESTEROS, A ;
GADELLA, M ;
DELOLMO, MA .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3379-3386
[3]  
BONDIA JMG, 1989, ANN PHYS-NEW YORK, V190, P107
[4]   RELATIVISTIC QUANTUM KINEMATICS IN THE MOYAL REPRESENTATION [J].
CARINENA, JF ;
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (06) :901-933
[5]   LOCALLY OPERATING REALIZATIONS OF TRANSFORMATION LIE-GROUPS [J].
CARINENA, JF ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2096-2106
[6]  
CARINENA JF, 1979, J MATH PHYS, V20, P2170
[7]   SPLITTING AND REPRESENTATION GROUPS FOR POLISH GROUPS [J].
CATTANEO, U .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (02) :452-460
[8]  
De Azcarraga J. A., 1995, CAMBRIDGE MONOGRAPHS
[9]  
DEGROOT SR, 1974, TRANSFORMATION WEYL
[10]   MOYAL FORMULATION OF QUANTUM-MECHANICS [J].
GADELLA, M .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1995, 43 (03) :229-264