Symplectic methods for the nonlinear Schrodinger equation

被引:74
作者
Tang, YF
Vazquez, L
Zhang, F
PerezGarcia, VM
机构
[1] NATL UNIV SINGAPORE, FAC SCI, COMPUTAT SCI PROGRAM, SINGAPORE 119260, SINGAPORE
[2] UNIV CASTILLA LA MANCHA, ESCUELA TECN SUPER INGENIEROS IND, DEPT MATEMAT, CIUDAD REAL 13071, SPAIN
[3] CHINESE ACAD SCI, INST COMPUTAT MATH & SCI ENGN COMP, BEIJING 100080, PEOPLES R CHINA
关键词
symplectic methods; nonlinear Schrodinger equation; invariants; formal energy;
D O I
10.1016/0898-1221(96)00136-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the spatial discretization of the nonlinear Schrodinger equation leads to a Hamiltonian system, which can be simulated with symplectic numerical schemes. In particular, we apply two symplectic integrators to the nonlinear Schrodinger equation, and we demonstrate that they are able to produce accurate results and to preserve very well the invariants of the original system, such as the energy and charge.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 28 条
[1]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[2]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288
[3]  
Dodd R. K., 1982, Solitons and nonlinear wave equations
[4]   NUMERICAL-SIMULATION OF NONLINEAR SCHRODINGER SYSTEMS - A NEW CONSERVATIVE SCHEME [J].
FEI, Z ;
PEREZGARCIA, VM ;
VAZQUEZ, L .
APPLIED MATHEMATICS AND COMPUTATION, 1995, 71 (2-3) :165-177
[5]  
FENG K, 1986, J COMPUT MATH, V7, P71
[6]  
FENG K, 1985, 1984 P BEIJ S DIFF G, P42
[7]  
GE Z, 1988, J COMPUT MATH, V6, P88
[8]  
GUO BY, 1986, J COMPUT MATH, V4, P121
[9]  
Hasegawa A., 1989, Optical Solitons in Fibers
[10]   NUMERICAL EXPERIENCE WITH THE NONLINEAR SCHRODINGER-EQUATION [J].
HERBST, BM ;
MORRIS, JL ;
MITCHELL, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :282-305