The Ins2Akita mouse as a model of early retinal complications in diabetes

被引:388
作者
Barber, AJ
Antonetti, DA
Kern, TS
Reiter, CEN
Soans, RS
Krady, JK
Levison, SW
Gardner, TW
Bronson, SK
机构
[1] Penn State Univ, Milton S Hershey Med Ctr, Penn State Coll Med, Dept Ophthalmol, Hershey, PA 17033 USA
[2] Penn State Coll Med, Dept Cellular & Mol Physiol, Hershey, PA USA
[3] Penn State Coll Med, Dept Neural & Behav Sci, Hershey, PA USA
[4] Penn State Coll Med, Penn State Retina Res Grp, Ulerich Ophthalmol Res Lab, Hershey, PA USA
[5] Penn State Coll Med, Juvenile Diabet Res Fdn, Diabet Retinopathy Ctr, Hershey, PA USA
[6] Case Western Reserve Univ, Ctr Diabet Res, Dept Med, Cleveland, OH 44106 USA
关键词
D O I
10.1167/iovs.04-1340
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. METHODS. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. RESULTS. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P < 0.005), a modest increase in acellular capillaries after 36 weeks of hyperglycemia (P < 0.0008), and alterations in the morphology of astrocytes and microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P < 0.01). After 22 weeks of hyperglycemia, there was a 16.7% central and 27% peripheral reduction in the thickness of the inner plexiform layer, a 15.6% peripheral reduction in the thickness of the inner nuclear layer (P < 0.001), and a 23.4% reduction in the number of cell bodies in the retinal ganglion cell layer (P < 0.005). In vitro insulin receptor kinase activity was reduced (P < 0.05) after 12 weeks of hyperglycemia. CONCLUSIONS. The retinas of heterozygous male Ins2(Akita) mice exhibit vascular, neural, and glial abnormalities generally consistent with clinical observations and other animal models of diabetes. In light of the relatively early, spontaneous onset of the disease and the popularity of the C57BL/6J inbred strain as a background for the generation and study of other genetic alterations, combining the Ins2(Akita) mutation with other engineered mutations will be of great use for studying the molecular basis of retinal complications of diabetes.
引用
收藏
页码:2210 / 2218
页数:9
相关论文
共 50 条
[1]   Diabetic retinopathy [J].
Aiello, LP ;
Gardner, TW ;
King, GL ;
Blankenship, G ;
Cavallerano, JD ;
Ferris, FL ;
Klein, R .
DIABETES CARE, 1998, 21 (01) :143-156
[2]   Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content - Vascular endothelial growth factor decreases occludin in retinal endothelial cells [J].
Antonetti, DA ;
Barber, AJ ;
Khin, S ;
Lieth, E ;
Tarbell, JM ;
Gardner, TW .
DIABETES, 1998, 47 (12) :1953-1959
[3]   Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1 - A potential mechanism for vascular permeability in diabetic retinopathy and tumors [J].
Antonetti, DA ;
Barber, AJ ;
Hollinger, LA ;
Wolpert, EB ;
Gardner, TW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (33) :23463-23467
[4]   A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat [J].
Asnaghi, V ;
Gerhardinger, C ;
Hoehn, T ;
Adeboje, A ;
Lorenzi, M .
DIABETES, 2003, 52 (02) :506-511
[5]  
Barber AJ, 2000, INVEST OPHTH VIS SCI, V41, P3561
[6]   Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3 [J].
Barber, AJ ;
Nakamura, M ;
Wolpert, EB ;
Reiter, CEN ;
Seigel, GM ;
Antonetti, DA ;
Gardner, TW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (35) :32814-32821
[7]   Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats [J].
Barber, AJ ;
Antonetti, DA .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (12) :5410-5416
[8]   Neural apoptosis in the retina during experimental and human diabetes - Early onset and effect of insulin [J].
Barber, AJ ;
Lieth, E ;
Khin, SA ;
Antonetti, DA ;
Buchanan, AG ;
Gardner, TW .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (04) :783-791
[9]  
BLOODWORTH JMB, 1962, DIABETES, V47, P815
[10]   DIABETES-INDUCED FUNCTIONAL AND STRUCTURAL-CHANGES IN INSULIN-RECEPTORS FROM RAT SKELETAL-MUSCLE [J].
BURANT, CF ;
TREUTELAAR, MK ;
BUSE, MG .
JOURNAL OF CLINICAL INVESTIGATION, 1986, 77 (01) :260-270