Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway

被引:91
作者
Gong, QM
Keeney, DR
Molinari, M
Zhou, ZF
机构
[1] Oregon Hlth & Sci Univ, Dept Med, Div Mol Med, Portland, OR 97239 USA
[2] Inst Res Biomed, CH-6500 Bellinzona, Switzerland
关键词
D O I
10.1074/jbc.M502327200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the human ether-a-go-go-related gene (hERG) cause chromosome 7-linked long QT syndrome type II (LQT2). We have shown previously that LQT2 mutations lead to endoplasmic reticulum ( ER) retention and rapid degradation of mutant hERG proteins. In this study we examined the role of the ubiquitin-proteasome pathway in the degradation of the LQT2 mutation Y611H. We showed that proteasome inhibitors N-acetyl-L-leucyl-L-leucyl-L-norleucinal and lactacystin but not lysosome inhibitor leupeptin inhibited the degradation of Y611H mutant channels. In addition, ER mannosidase I inhibitor kifunensine and down-regulation of EDEM ( ER degradation-enhancing alpha-mannosidase-like protein) also suppressed the degradation of Y611H mutant channels. Proteasome inhibition but not mannosidase inhibition led to the accumulation of full-length hERG protein in the cytosol. The hERG protein accumulated in the cytosol was deglycosylated. Proteasome inhibition also resulted in the accumulation of polyubiquitinated hERG channels. These results suggest that the degradation of LQT2 mutant channels is mediated by the cytosolic proteasome in a process that involves mannose trimming, polyubiquitination, and deglycosylation of mutant channels.
引用
收藏
页码:19419 / 19425
页数:7
相关论文
共 52 条
[1]   The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61β and a cytosolic, deglycosylated intermediary [J].
Bebök, Z ;
Mazzochi, C ;
King, SA ;
Hong, JS ;
Sorscher, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29873-29878
[2]   A glycosylated type I membrane protein becomes cytosolic when peptide:: N-glycanase is compromised [J].
Blom, D ;
Hirsch, C ;
Stern, P ;
Tortorella, D ;
Ploegh, HL .
EMBO JOURNAL, 2004, 23 (03) :650-658
[3]   ER protein quality control and proteasome-mediated protein degradation [J].
Brodsky, JL ;
McCracken, AA .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (05) :507-513
[4]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[5]   Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome [J].
de Virgilio, M ;
Weninger, H ;
Ivessa, NE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9734-9743
[6]   Biology of cardiac arrhythmias - Ion channel protein trafficking [J].
Delisle, BP ;
Anson, BD ;
Rajamani, S ;
January, CT .
CIRCULATION RESEARCH, 2004, 94 (11) :1418-1428
[7]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888
[8]   Quality control in the endoplasmic reticulum [J].
Ellgaard, L ;
Helenius, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (03) :181-191
[9]   Glycoprotein quality control in the endoplasmic reticulum - Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits [J].
Fagioli, C ;
Sitia, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12885-12892
[10]   Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel hERG [J].
Ficker, E ;
Dennis, AT ;
Wang, L ;
Brown, AM .
CIRCULATION RESEARCH, 2003, 92 (12) :E87-E100