Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions

被引:146
作者
Grossman, A
Takahashi, H
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[2] RIKEN, Plant Sci Ctr, Wako, Saitama 3510198, Japan
来源
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY | 2001年 / 52卷
关键词
nitrogen; phosphorus; sulfur; starvation; light;
D O I
10.1146/annurev.arplant.52.1.163
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Organisms acclimate to a continually fluctuating nutrient environment. Acclimation involves responses specific for the limiting nutrient as well as responses that are more general and occur when an organism experiences different stress conditions. Specific responses enable organisms to efficiently scavenge the limiting nutrient and may involve the induction of high-affinity transport systems and the synthesis of hydrolytic enzymes that facilitate the release of the nutrient from extracellular organic molecules or from internal reserves. General responses include changes in cell division rates and global alterations in metabolic activities. In photosynthetic organisms there must be precise regulation of photosynthetic activity since when severe nutrient limitation prevents continued cell growth, excitation of photosynthetic pigments could result in the formation of reactive oxygen species, which can severely damage structural and functional features of the cell. This review focuses on ways that photosynthetic eukaryotes assimilate the macronutrients nitrogen, sulfur, and phosphorus, and the mechanisms that govern assimilatory activities. Also discussed are molecular responses to macronutrient limitation and the elicitation of those responses through integration of environmental and cellular cues.
引用
收藏
页码:163 / 210
页数:48
相关论文
共 329 条
[11]  
BALL SG, 1998, MOL BIOL CHLOROPLAST, P549
[12]   Regulation of S-like ribonuclease levels in arabidopsis.: Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation [J].
Bariola, PA ;
MacIntosh, GC ;
Green, PJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :331-342
[13]   Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid [J].
Barroso, C ;
Romero, LC ;
Cejudo, FJ ;
Vega, JM ;
Gotor, C .
PLANT MOLECULAR BIOLOGY, 1999, 40 (04) :729-736
[14]  
BECKER TW, 1992, PLANTA, V188, P39, DOI [10.1007/BF01160710, 10.1007/BF00198937]
[15]  
BECKER TW, 1993, PLANT PHYSIOL BIOCH, V31, P725
[16]  
Bennoun P., 1998, MOL BIOL CHLOROPLAST, P451
[17]   Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae [J].
Berges, JA ;
Charlebois, DO ;
Mauzerall, DC ;
Falkowski, PG .
PLANT PHYSIOLOGY, 1996, 110 (02) :689-696
[18]   Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase [J].
Bick, JA ;
Åslund, F ;
Chen, YC ;
Leustek, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8404-8409
[19]   Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase [J].
Blaszczyk, A ;
Brodzik, R ;
Sirko, A .
PLANT JOURNAL, 1999, 20 (02) :237-243
[20]   Cysteine synthesis in plants: Protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana [J].
Bogdanova, N ;
Hell, R .
PLANT JOURNAL, 1997, 11 (02) :251-262