Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons

被引:113
作者
Mickus, T [1 ]
Jung, HY [1 ]
Spruston, N [1 ]
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Inst Neurosci, Evanston, IL 60208 USA
关键词
D O I
10.1016/S0006-3495(99)77248-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Sodium channels in the somata and dendrites of hippocampal CAI pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.
引用
收藏
页码:846 / 860
页数:15
相关论文
共 37 条
[1]   FREQUENCY-DEPENDENT PROPAGATION OF SODIUM ACTION-POTENTIALS IN DENDRITES OF HIPPOCAMPAL CA1 PYRAMIDAL NEURONS [J].
CALLAWAY, JC ;
ROSS, WN .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (04) :1395-1403
[2]   Protein kinase C activation decreases activity-dependent attenuation of dendritic Na+ current in hippocampal CA1 pyramidal neurons [J].
Colbert, CM ;
Johnston, D .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (01) :491-495
[3]  
Colbert CM, 1997, J NEUROSCI, V17, P6512
[4]   ON THE STOCHASTIC PROPERTIES OF BURSTS OF SINGLE ION CHANNEL OPENINGS AND OF CLUSTERS OF BURSTS [J].
COLQUHOUN, D ;
HAWKES, AG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1982, 300 (1098) :1-59
[5]   Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures [J].
Debanne, D ;
Gähwiler, BH ;
Thompson, SM .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 507 (01) :237-247
[6]   Interaction between fast and slow inactivation in Skm1 sodium channels [J].
Featherstone, DE ;
Richmond, JE ;
Ruben, PC .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3098-3109
[7]   Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices [J].
Fleidervish, IA ;
Friedman, A ;
Gutnick, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 493 (01) :83-97
[8]   Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons [J].
Golding, NL ;
Spruston, N .
NEURON, 1998, 21 (05) :1189-1200
[9]  
Jung HY, 1997, J NEUROSCI, V17, P6639
[10]  
Kamondi A, 1998, HIPPOCAMPUS, V8, P244, DOI 10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO