microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans

被引:109
作者
Bidzhekov, Kiril [1 ,2 ]
Gan, Lin [3 ]
Denecke, Bernd [3 ]
Rostalsky, Andre [1 ]
Hristov, Mihail [1 ,2 ]
Koeppel, Thomas A.
Zernecke, Alma [4 ]
Weber, Christian [1 ,5 ,6 ]
机构
[1] Univ Munich, Inst Cardiovasc Prevent, D-80336 Munich, Germany
[2] Rhein Westfal TH Aachen, Inst Mol Cardiovasc Res IMCAR, Aachen, Germany
[3] Rhein Westfal TH Aachen, Interdisciplinary Ctr Clin Res Aachen, Aachen, Germany
[4] Univ Wurzburg, Rudolf Virchow Ctr, DFG Res Ctr Expt Biomed, Wurzburg, Germany
[5] Maastricht Univ, Cardiovasc Res Inst Maastricht CARIM, Maastricht, Netherlands
[6] Munich Heart Alliance, Munich, Germany
关键词
microRNAs; atherosclerosis; classical and non-classical monocytes; DENDRITIC CELLS; ANGIOGENESIS; MACROPHAGES; MYOCARDIN; PROFILES; RUPTURE; PATHWAY; REVEAL;
D O I
10.1160/TH11-09-0607
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Small non-coding nnicroRNAs (miRNAs) have emerged to play critical roles in cardiovascular biology. Monocytes critically drive atherosclerotic lesion formation, and can be subdivided into a classical and non-classical subset. Here we scrutinised the miRNA signature of human classical and non-classical monocytes, and compared miRNA expression profiles of atherosclerotic plaques from human carotid arteries and healthy arteries. We identified miRNAs to be differentially regulated with a two-fold or higher difference between classical and non-classical monocyte subsets. Moreover, comparing miRNA expression in atherosclerotic plaques compared to healthy arteries, we observed several miRNAs to be aberrantly expressed, with the majority of miRNAs displaying a two-fold or higher increase in plaques and only few miRNAs being decreased. To elucidate similarities in miRNA signatures between monocyte subsets and atherosclerotic plaque, expression of miRNAs highly abundant in monocytes and plaque tissues were compared. Several miRNAs were found in atherosclerotic plaques but not in healthy vessels or either monocyte subset. However, we could identify miRNAs co-expressed in plaque tissue and classical monocytes (miR-99b, miR-152), or non-classical monocytes (miR-422a), or in both monocytes subsets. We thus unravelled candidate miRNAs, which may facilitate our understanding of monocyte recruitment and fate during atherosclerosis, and may serve as therapeutic targets for treating inflammatory vascular diseases.
引用
收藏
页码:619 / 625
页数:7
相关论文
共 37 条
[1]   MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells [J].
Ceppi, Maurizio ;
Pereira, Patricia M. ;
Dunand-Sauthier, Isabelle ;
Barras, Emmanuele ;
Reith, Walter ;
Santos, Manuel A. ;
Pierre, Philippe .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (08) :2735-2740
[2]   Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation [J].
Chen, Jie ;
Yin, Hao ;
Jiang, Yulan ;
Radhakrishnan, Sarvan Kumar ;
Huang, Zhan-Peng ;
Li, Jingjing ;
Shi, Zhan ;
Kilsdonk, Elisabeth P. C. ;
Gui, Yu ;
Wang, Da-Zhi ;
Zheng, Xi-Long .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (02) :368-U287
[3]   miR-145 and miR-143 regulate smooth muscle cell fate and plasticity [J].
Cordes, Kimberly R. ;
Sheehy, Neil T. ;
White, Mark P. ;
Berry, Emily C. ;
Morton, Sarah U. ;
Muth, Alecia N. ;
Lee, Ting-Hein ;
Miano, Joseph M. ;
Ivey, Kathryn N. ;
Srivastava, Deepak .
NATURE, 2009, 460 (7256) :705-U80
[4]   Circulating MicroRNAs in Patients With Coronary Artery Disease [J].
Fichtlscherer, Stephan ;
De Rosa, Salvatore ;
Fox, Henrik ;
Schwietz, Thomas ;
Fischer, Ariane ;
Liebetrau, Christoph ;
Weber, Michael ;
Hamm, Christian W. ;
Roexe, Tino ;
Mueller-Ardogan, Marga ;
Bonauer, Angelika ;
Zeiher, Andreas M. ;
Dimmeler, Stefanie .
CIRCULATION RESEARCH, 2010, 107 (05) :677-U257
[5]   Regulation of the Migration and Survival of Monocyte Subsets by Chemokine Receptors and Its Relevance to Atherosclerosis [J].
Gautier, Emmanuel L. ;
Jakubzick, Claudia ;
Randolph, Gwendalyn J. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2009, 29 (10) :1412-1418
[6]   Rupture of Vulnerable Atherosclerotic Plaques: MicroRNAs Conducting the Orchestra? [J].
Haver, Vincent G. ;
Slart, Riemer H. J. A. ;
Zeebregts, Clark J. ;
Peppelenbosch, Maikel P. ;
Tio, Rene A. .
TRENDS IN CARDIOVASCULAR MEDICINE, 2010, 20 (02) :65-71
[7]  
Ihaka R., 1996, J. Comput. Graph. Stat., V5, P299, DOI [10.2307/1390807, 10.1080/10618600.1996.10474713, DOI 10.1080/10618600.1996.10474713]
[8]   Comparison of gene expression profiles between human and mouse monocyte subsets [J].
Ingersoll, Molly A. ;
Spanbroek, Rainer ;
Lottaz, Claudio ;
Gautier, Emmanuel L. ;
Frankenberger, Marion ;
Hoffmann, Reinhard ;
Lang, Roland ;
Haniffa, Muzlifah ;
Collin, Matthew ;
Tacke, Frank ;
Habenicht, Andreas J. R. ;
Ziegler-Heitbrock, Loems ;
Randolph, Gwendalyn J. .
BLOOD, 2010, 115 (03) :E10-E19
[9]   MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation [J].
Ji, Ruirui ;
Cheng, Yunhui ;
Yue, Junming ;
Yang, Jian ;
Liu, Xiaojun ;
Chen, He ;
Dean, David B. ;
Zhang, Chunxiang .
CIRCULATION RESEARCH, 2007, 100 (11) :1579-1588
[10]   MicroRNA-1 Inhibits Myocardin-Induced Contractility of Human Vascular Smooth Muscle Cells [J].
Jiang, Yulan ;
Yin, Hao ;
Zheng, Xi-Long .
JOURNAL OF CELLULAR PHYSIOLOGY, 2010, 225 (02) :506-511