Folate-conjugated thermoresponsive block copolymers: Highly efficient conjugation and solution self-assembly

被引:180
作者
De, Priyadarsi [1 ]
Gondi, Sudershan R. [1 ]
Sumerlin, Brent S. [1 ]
机构
[1] So Methodist Univ, Dept Chem, Dallas, TX 75275 USA
关键词
D O I
10.1021/bm701255v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A combination of controlled radical polymerization and azide-alkyne click chemistry was employed to prepare temperature-responsive block copolymer micelles conjugated with biological ligands with potential for active targeting of cancer tissues. Block copolymers of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization with an azido chain transfer agent (CTA). Pseudo-first-order kinetics and linear molecular weight dependence on conversion were observed for the RAFT polymerizations. Cu(I)-catalyzed coupling with propargyl folate resulted in folic acid residues being efficiently conjugated to the alpha-azido chain ends of the homo and block copolymers. Temperature-induced self-assembly resulted in aggregates capable of controlled release of a model hydrophobic drug. Cu(I)-catalyzed azide-alkyne cycloaddition has proven superior to conventional methods for conjugation of biological ligands to macromolecules, and the general strategy presented herein can potentially be extended to the preparation of folate-functionalized assemblies with other stimuli susceptibility (e.g., pH) for therapeutic and imaging applications.
引用
收藏
页码:1064 / 1070
页数:7
相关论文
共 68 条
[1]  
Armes SP, 2003, SELF-ASSEMBLY, P260
[2]  
Bae Y, 2005, MOL BIOSYST, V1, P242, DOI 10.1039/b500266d
[3]   In vivo antitumor activity of the folate-conjugated pH-Sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments [J].
Bae, Younsoo ;
Nishiyama, Nobuhiro ;
Kataoka, Kazunori .
BIOCONJUGATE CHEMISTRY, 2007, 18 (04) :1131-1139
[4]   'Click' chemistry in polymer and materials science [J].
Binder, Wolfgang H. ;
Sachsenhofer, Robert .
MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (01) :15-54
[5]   Facile strategy to well-defined water-soluble boronic acid (co)polymers [J].
Cambre, Jennifer N. ;
Roy, Debashish ;
Gondi, Sudershan R. ;
Sumerlin, Brent S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (34) :10348-+
[6]   Polytriazoles as copper(I)-stabilizing ligands in catalysis [J].
Chan, TR ;
Hilgraf, R ;
Sharpless, KB ;
Fokin, VV .
ORGANIC LETTERS, 2004, 6 (17) :2853-2855
[7]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[8]   N-heterocyclic carbenes:: Versatile reagents for postpolymerization modification [J].
Coady, Daniel J. ;
Bielawski, Christopher W. .
MACROMOLECULES, 2006, 39 (26) :8895-8897
[9]   Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization [J].
Convertine, AJ ;
Lokitz, BS ;
Vasileva, Y ;
Myrick, LJ ;
Scales, CW ;
Lowe, AB ;
McCormick, CL .
MACROMOLECULES, 2006, 39 (05) :1724-1730
[10]   Polymer conjugates as anticancer nanomedicines [J].
Duncan, Ruth .
NATURE REVIEWS CANCER, 2006, 6 (09) :688-701