Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars

被引:349
作者
Aulakh, MS
Wassmann, R
Bueno, C
Kreuzwieser, J
Rennenberg, H [1 ]
机构
[1] Univ Freiburg, Inst Forest Bot & Tree Physiol, D-79085 Freiburg, Germany
[2] Int Rice Res Inst, Soil & Water Sci Div, Makati City, Philippines
[3] Fraunhofer Inst Atmospher Environm Res, Garmisch Partenkirchen, Germany
关键词
root exudates; organic carbon; organic acids; carbohydrates; rice cultivars; growth stages; methane production;
D O I
10.1055/s-2001-12905
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant root exudates play important roles in the rhizosphere. We tested three media (nutrient solution, deionized water and CaSO4 solution) for three periods of time (2, 4 and 6 h) for collecting root exudates of soil-grown rice plants. Nutrient culture solution created complications in the analyses of exudates for total organic C (TOC) by the wet digestion method and of organic acids by HPLC due to the interference by its components. Deionized water excluded such interference in analytical analyses but affected the turgor of root cells: roots of four widely different rice cultivars excreted 20 to 60% more TOC in deionized water than in 0.01 M CaSO4. Furthermore, the proportion of carbohydrates in TOC was also enhanced. Calcium sulfate solution maintained the osmotic environment for root cells and did not interfere in analytical procedures. Collection for 2 h avoided under-estimation of TOC and its components exuded by rice roots, which occurred during prolonged exposure. By placing plants in 0.01 M CaSO4 for 2 h, root exudates of soil-grown traditional, tall rice cultivars (Dular, B40 and Intan), high-yielding dwarf cultivars (IR72, IR52, IR64 and PSBRc 20), new plant type cultivars (IR65598 and IR65600) and a hybrid (Magat) were collected at seedling, panicle initiation, flowering and maturity and characterized for TOC and organic acids. The exudation rates were, in general, lowest at seedling stage, increased until flowering but decreased at maturity. Among organic acids, malic acid showed the highest concentration followed by tartaric, succinic, citric and lactic acids. With advancing plant growth, exudation of organic acids substituted exudation of sugars. Root and shoot biomass were positively correlated with carbon exudation suggesting that it is driven by plant biomass. As root exudates provide substrates for methanogenesis in rice fields, large variations in root exudation by cultivars and at different growth stages could greatly influence CH4 emissions. Therefore, the use of high-yielding cultivars with lowest root excretions, for example IR65598 and IR65600, would mediate low exudate-induced CH4 production. The screening of exciting rice cultivars and breeding of new cultivars with low exudation rates could offer an important option for mitigation of CH4 emission from rice agriculture to the atmosphere.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 45 条
[21]   RESORPTION OF ORGANIC-COMPONENTS BY ROOTS OF ZEA-MAYS L AND ITS CONSEQUENCES IN THE RHIZOSPHERE .1. RESORPTION OF 14C LABELED GLUCOSE, MANNOSE AND CITRIC-ACID [J].
JONES, DL ;
DARRAH, PR .
PLANT AND SOIL, 1992, 143 (02) :259-266
[22]   ROLE OF ROOT DERIVED ORGANIC-ACIDS IN THE MOBILIZATION OF NUTRIENTS FROM THE RHIZOSPHERE [J].
JONES, DL ;
DARRAH, PR .
PLANT AND SOIL, 1994, 166 (02) :247-257
[23]   Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake [J].
Kirk, GJD ;
Santos, EE ;
Santos, MB .
NEW PHYTOLOGIST, 1999, 142 (02) :185-200
[24]   AERENCHYMA FORMATION AND METHANE AND OXYGEN-EXCHANGE IN RICE [J].
KLUDZE, HK ;
DELAUNE, RD ;
PATRICK, WH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (02) :386-391
[25]  
Leon J. C. de, 1995, Philippine Journal of Crop Science, V20, P113
[26]  
LIN M, 1989, Scientia Agricultura Sinica, V22, P6
[27]   EFFECT OF UREA FERTILIZER AND ENVIRONMENTAL-FACTORS ON CH4 EMISSIONS FROM A LOUISIANA, USA RICE FIELD [J].
LINDAU, CW ;
BOLLICH, PK ;
DELAUNE, RD ;
PATRICK, WH ;
LAW, VJ .
PLANT AND SOIL, 1991, 136 (02) :195-203
[28]   Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants [J].
Lu, Y ;
Wassmann, R ;
Neue, HU ;
Huang, C .
BIOGEOCHEMISTRY, 1999, 47 (02) :203-218
[29]   Methanogenic responses to exogenous substrates in anaerobic rice soils [J].
Lu, Y ;
Wassmann, R ;
Neue, HU ;
Huang, C ;
Bueno, CS .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (11-12) :1683-1690
[30]  
MACRAI IC, 1966, PHYTON, V23, P95