Natural gradient descent for on-line learning

被引:72
作者
Rattray, M
Saad, D
Amari, S
机构
[1] Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England
[2] Aston Univ, Neural Comp Res Grp, Birmingham B4 7ET, W Midlands, England
[3] RIKEN, Brain Sci Inst, Lab Informat Synth, Urawa, Saitama, Japan
关键词
D O I
10.1103/PhysRevLett.81.5461
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Natural gradient descent is an on-line variable-metric optimization algorithm which utilizes an underlying Riemannian parameter space. We analyze the dynamics of natural gradient descent beyond the asymptotic regime by employing an exact statistical mechanics description of learning in two-layer feed-forward neural networks. For a realizable learning scenario we find significant improvements over standard gradient descent for both the transient and asymptotic stages of learning, with a slower power law increase in learning time as task complexity grows. [S0031-9007(98)07950-2].
引用
收藏
页码:5461 / 5464
页数:4
相关论文
共 10 条
[1]   STATISTICAL-THEORY OF LEARNING-CURVES UNDER ENTROPIC LOSS CRITERION [J].
AMARI, S ;
MURATA, N .
NEURAL COMPUTATION, 1993, 5 (01) :140-153
[2]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[3]   Transient dynamics of on-line learning in two-layered neural networks [J].
Biehl, M ;
Riegler, P ;
Wohler, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16) :4769-4780
[4]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[5]  
Leen TK, 1998, ADV NEUR IN, V10, P301
[6]   Globally optimal parameters for on-line learning in multilayer neural networks [J].
Saad, D ;
Rattray, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2578-2581
[7]   EXACT SOLUTION FOR ONLINE LEARNING IN MULTILAYER NEURAL NETWORKS [J].
SAAD, D ;
SOLLA, SA .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4337-4340
[8]   On-line learning with adaptive back-propagation in two-layer networks [J].
West, AHL ;
Saad, D .
PHYSICAL REVIEW E, 1997, 56 (03) :3426-3445
[9]  
Yang HH, 1998, ADV NEUR IN, V10, P385
[10]  
YANG HN, IN PRESS