Integrable structure of conformal field theory III. The Yang-Baxter relation

被引:254
作者
Bazhanov, VV [1 ]
Lukyanov, SL
Zamolodchikov, AB
机构
[1] Australian Natl Univ, Dept Theoret Phys, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, IAS, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[3] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
[4] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[5] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
关键词
D O I
10.1007/s002200050531
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we fill some gaps in the arguments of our previous papers [1,2], In particular, we give a proof that the L operators of Conformal Field Theory indeed satisfy the defining relations of the Yang-Baxter algebra. Among other results we present a derivation of the functional relations satisfied by T and Q operators and a proof of the basic analyticity assumptions for these operators used in [1,2].
引用
收藏
页码:297 / 324
页数:28
相关论文
共 27 条
[1]   8-VERTEX MODEL IN LATTICE STATISTICS AND ONE-DIMENSIONAL ANISOTROPIC HEISENBERG CHAIN .2. EQUIVALENCE TO A GENERALIZED ICE-TYPE LATTICE MODEL [J].
BAXTER, R .
ANNALS OF PHYSICS, 1973, 76 (01) :25-47
[2]   8-VERTEX MODEL IN LATTICE STATISTICS AND ONE-DIMENSIONAL ANISOTROPIC HEISENBERG CHAIN .3. EIGENVECTORS OF TRANSFER MATRIX AND HAMILTONIAN [J].
BAXTER, R .
ANNALS OF PHYSICS, 1973, 76 (01) :48-71
[3]   8-VERTEX MODEL IN LATTICE STATISTICS AND ONE-DIMENSIONAL ANISOTROPIC HEISENBERG CHAIN .1. SOME FUNDAMENTAL EIGENVECTORS [J].
BAXTER, R .
ANNALS OF PHYSICS, 1973, 76 (01) :1-24
[4]   Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :381-398
[5]   Integrable structure of conformal field theory - II. Q-operator and DDV equation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :247-278
[6]   Quantum field theories in finite volume: Excited state energies [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
NUCLEAR PHYSICS B, 1997, 489 (03) :487-531
[7]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]  
Drinfeld V G, 1987, P INT C MATH BERKELE, V1, P798
[9]   IRREGULAR DISTRIBUTION OF (N-BETA), N=1,2,3, ... QUADRATURE OF SINGULAR INTEGRANDS, AND CURIOUS BASIC HYPERGEOMETRIC-SERIES [J].
DRIVER, KA ;
LUBINSKY, DS ;
PETRUSKA, G ;
SARNAK, P .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (04) :469-481
[10]   DEFORMATIONS OF CONFORMAL FIELD-THEORIES AND SOLITON-EQUATIONS [J].
EGUCHI, T ;
YANG, SK .
PHYSICS LETTERS B, 1989, 224 (04) :373-378