Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species

被引:534
作者
Sumimoto, Hideki [1 ,2 ]
机构
[1] Kyushu Univ, Med Inst Bioregulat, Higashi Ku, Fukuoka 8128582, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
关键词
Duox; Nox; Noxa1; Noxo1; p22(phox); p40(phox); p47(phox); p67(phox); Rac; Rboh;
D O I
10.1111/j.1742-4658.2008.06488.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca2+-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.
引用
收藏
页码:3249 / 3277
页数:29
相关论文
共 207 条
[1]   ACTIVATION OF THE NADPH OXIDASE INVOLVES THE SMALL GTP-BINDING PROTEIN P21RAC1 [J].
ABO, A ;
PICK, E ;
HALL, A ;
TOTTY, N ;
TEAHAN, CG ;
SEGAL, AW .
NATURE, 1991, 353 (6345) :668-670
[2]   Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47 phox - Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47 phox, thereby activating the oxidase [J].
Ago, T ;
Nunoi, H ;
Ito, T ;
Sumimoto, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33644-33653
[3]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[4]   Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation [J].
Ago, T ;
Kuribayashi, F ;
Hiroaki, H ;
Takeya, R ;
Ito, T ;
Kohda, D ;
Sumimoto, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4474-4479
[5]   The PX domain as a novel phosphoinositide-binding module [J].
Ago, T ;
Takeya, R ;
Hiroaki, H ;
Kuribayashi, F ;
Ito, T ;
Kohda, D ;
Sumimoto, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (03) :733-738
[6]   Reactive oxygen species and development in microbial eukaryotes [J].
Aguirre, J ;
Ríos-Momberg, M ;
Hewitt, D ;
Hansberg, W .
TRENDS IN MICROBIOLOGY, 2005, 13 (03) :111-118
[7]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[8]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[9]   Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation [J].
Ambruso, DR ;
Knall, C ;
Abell, AN ;
Panepinto, J ;
Kurkchubasche, A ;
Thurman, G ;
Gonzalez-Aller, C ;
Hiester, A ;
deBoer, M ;
Harbeck, RJ ;
Oyer, R ;
Johnson, GL ;
Roos, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4654-4659
[10]   Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity [J].
Ameziane-El-Hassani, R ;
Morand, S ;
Boucher, JL ;
Frapart, YM ;
Apostolou, D ;
Agnandji, D ;
Gnidehou, S ;
Ohayon, R ;
Noël-Hudson, MS ;
Francon, J ;
Lalaoui, K ;
Virion, A ;
Dupuy, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (34) :30046-30054