Construction of compactly supported M-band wavelets

被引:45
作者
Bi, N [1 ]
Dai, XR
Sun, QY
机构
[1] Hangzhou Normal Coll, Dept Math, Hangzhou 310012, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
multiresolution; M-band scaling function; M-band wavelets; cardinal function; orthonormality;
D O I
10.1006/acha.1999.0236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the asymptotic regularity of Daubechies scaling functions and construct examples of M-band scaling functions which are both orthonormal and cardinal for M greater than or equal to 3. (C) 1999 Academic Press.
引用
收藏
页码:113 / 131
页数:19
相关论文
共 29 条
[1]  
AUSHER P, 1989, THESIS PARIS
[2]  
BI N, 1995, 9518 CMS ZHEJ U
[3]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[4]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[5]  
COHEN A, 1992, REV MAT IBEROAM, V8, P351
[6]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[7]  
DAUBECHIES I, 1992, CBMS NSF REG C SER A, V61
[8]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[9]   SOBOLEV CHARACTERIZATION OF SOLUTIONS OF DILATION EQUATIONS [J].
EIROLA, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1015-1030
[10]  
Gopinath R. A., 1992, WAVELETS TUTORIAL TH, P603