SOBOLEV CHARACTERIZATION OF SOLUTIONS OF DILATION EQUATIONS

被引:94
作者
EIROLA, T
机构
关键词
WAVELETS; ITERATIVE INTERPOLATION; POSITIVE OPERATORS;
D O I
10.1137/0523058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work studies the smoothness of the solutions of dilation equations, which are encountered in the multiresolution analysis and iterative interpolation processes. Sharp limit of the Sobolev exponent of the solution is given as a function of the spectral radius of an associated finite-dimensional positive operator. In addition, tools are given to get good explicit upper and lower bounds for the exponent.
引用
收藏
页码:1015 / 1030
页数:16
相关论文
共 10 条
[1]  
[Anonymous], 1972, APPROXIMATE SOLUTION
[2]  
CAVARETTA AS, 1992, MEM AM MATH SOC, V543
[3]  
DAHMEN W, 1990, MULTIVARIATE APPROXI, P69
[4]   2-SCALE DIFFERENCE-EQUATIONS .2. LOCAL REGULARITY, INFINITE PRODUCTS OF MATRICES AND FRACTALS [J].
DAUBECHIES, I ;
LAGARIAS, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1031-1079
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[7]  
DYN N, 1990, INT S NUM M, V94, P91
[8]  
MEYER Y, 1990, ONDELETTES
[9]   POWER BOUNDED PROLONGATIONS AND PICARD-LINDELOF ITERATION [J].
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1990, 58 (05) :479-501
[10]  
SCHOENBERG IJ, 1973, SIAM REGIONAL C SER