MONOGENIC-LBP: A NEW APPROACH FOR ROTATION INVARIANT TEXTURE CLASSIFICATION

被引:46
作者
Zhang, Lin [1 ]
Zhang, Lei [1 ]
Guo, Zhenhua [1 ]
Zhang, David [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Texture classification; monogenic signal; LBP; IMAGE CLASSIFICATION; FEATURES;
D O I
10.1109/ICIP.2010.5651885
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analysis of two-dimensional textures has many potential applications in computer vision. In this paper, we investigate the problem of rotation invariant texture classification, and propose a novel texture feature extractor, namely Monogenic-LBP (M-LBP). M-LBP integrates the traditional Local Binary Pattern (LBP) operator with the other two rotation invariant measures: the local phase and the local surface type computed by the 1(st)-order and 2(nd)-order Riesz transforms, respectively. The classification is based on the image's histogram of M-LBP responses. Extensive experiments conducted on the CUReT database demonstrate the overall superiority of M-LBP over the other state-of-the-art methods evaluated.
引用
收藏
页码:2677 / 2680
页数:4
相关论文
共 13 条
[1]   Reflectance and texture of real-world surfaces [J].
Dana, KJ ;
Van Ginneken, B ;
Nayar, SK ;
Koenderink, JJ .
ACM TRANSACTIONS ON GRAPHICS, 1999, 18 (01) :1-34
[2]   Gaussian MRF rotation-invariant features for image classification [J].
Deng, HW ;
Clausi, DA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (07) :951-955
[3]  
Do Carmo M.P., 2016, Differential Geometry of Curves and Surfaces: Revised and Updated, V2nd
[4]   The monogenic signal [J].
Felsberg, M ;
Sommer, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (12) :3136-3144
[5]  
Fleischmann O., 2008, 2D SIGNAL ANAL GEN H
[6]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621
[7]   A MODEL-BASED METHOD FOR ROTATION INVARIANT TEXTURE CLASSIFICATION [J].
KASHYAP, RL ;
KHOTANZAD, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (04) :472-481
[8]   TEXTURE CLASSIFICATION AND SEGMENTATION USING MULTIRESOLUTION SIMULTANEOUS AUTOREGRESSIVE MODELS [J].
MAO, JC ;
JAIN, AK .
PATTERN RECOGNITION, 1992, 25 (02) :173-188
[9]   Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J].
Ojala, T ;
Pietikäinen, M ;
Mäenpää, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) :971-987
[10]   Filtering for texture classification: A comparative study [J].
Randen, T ;
Husoy, JH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (04) :291-310