Neurotrophin-4, alone or heterodimerized with brain-derived neurotrophic factor, is sorted to the constitutive secretory pathway

被引:20
作者
Hibbert, AP
Morris, SJ
Seidah, NG
Murphy, RA
机构
[1] McGill Univ, Montreal Neurol Inst, Dept Neurol & Neurosurg, Ctr Neuronal Survival, Montreal, PQ H3A 2B4, Canada
[2] Hosp Sick Children, Dept Dev Biol, Toronto, ON M5G 1X8, Canada
[3] Inst Rech Clin Montreal, Montreal, PQ H2W 1R7, Canada
关键词
D O I
10.1074/jbc.M300961200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nerve growth factor and neurotrophin-3 (NT-3) are processed within the constitutive secretory pathway of neurons and neuroendocrine cells and are released continuously in an activity-independent fashion. In contrast, brain-derived neurotrophic factor (BDNF) is processed in the regulated secretory pathway, stored in vesicles, and released in response to neuronal activity, consistent with its role in modulating synaptic plasticity. In this study, we used vaccinia virus infection and transfection methods to monitor the processing and sorting of neurotrophin-4 (NT-4) in AtT-20 cells, which have been used as a model for the sorting of secretory proteins in neurons. Our data show that NT-4 is processed in the constitutive secretory pathway. The molecule is diffusely distributed within the cells and released, soon after being synthesized, in a manner that is not affected by cell depolarization. We further show that NT-4 and BDNF, when co-expressed, can form heterodimers that are constitutively released. In contrast, heterodimers of NT-3 and BDNF have been shown to be released through the regulated secretory pathway. Thus, NT-4, alone or when co-expressed with BDNF, is processed within and secreted by the constitutive secretory pathway.
引用
收藏
页码:48129 / 48136
页数:8
相关论文
共 47 条
[1]  
ALDER M, 1983, P NATL ACAD SCI USA, V80, P2086
[2]  
ARAKAWA T, 1994, J BIOL CHEM, V269, P27833
[3]   Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ [J].
Balkowiec, A ;
Katz, DM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (19) :7417-7423
[4]   ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury [J].
Beattie, MS ;
Harrington, AW ;
Lee, R ;
Kim, JY ;
Boyce, SL ;
Longo, FM ;
Bresnahan, JC ;
Hempstead, BL ;
Yoon, SO .
NEURON, 2002, 36 (03) :375-386
[5]   COMPARATIVE BIOSYNTHESIS, COVALENT POSTTRANSLATIONAL MODIFICATIONS AND EFFICIENCY OF PROSEGMENT CLEAVAGE OF THE PROHORMONE CONVERTASES PC1 AND PC2 - GLYCOSYLATION, SULFATION AND IDENTIFICATION OF THE INTRACELLULAR SITE OF PROSEGMENT CLEAVAGE OF PC1 AND PC2 [J].
BENJANNET, S ;
RONDEAU, N ;
PAQUET, L ;
BOUDREAULT, A ;
LAZURE, C ;
CHRETIEN, M ;
SEIDAH, NG .
BIOCHEMICAL JOURNAL, 1993, 294 :735-743
[6]   PC1 AND PC2 ARE PROPROTEIN CONVERTASES CAPABLE OF CLEAVING PROOPIOMELANOCORTIN AT DISTINCT PAIRS OF BASIC RESIDUES [J].
BENJANNET, S ;
RONDEAU, N ;
DAY, R ;
CHRETIEN, M ;
SEIDAH, NG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3564-3568
[7]   NEUROTROPHIN-5 - A NOVEL NEUROTROPHIC FACTOR THAT ACTIVATES TRK AND TRKB [J].
BERKEMEIER, LR ;
WINSLOW, JW ;
KAPLAN, DR ;
NIKOLICS, K ;
GOEDDEL, DV ;
ROSENTHAL, A .
NEURON, 1991, 7 (05) :857-866
[8]   Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system [J].
Bibel, M ;
Barde, YA .
GENES & DEVELOPMENT, 2000, 14 (23) :2919-2937
[9]   CHARACTERIZATION OF NERVE GROWTH-FACTOR (NGF) RELEASE FROM HIPPOCAMPAL-NEURONS - EVIDENCE FOR A CONSTITUTIVE AND AN UNCONVENTIONAL SODIUM-DEPENDENT REGULATED PATHWAY [J].
BLOCHL, A ;
THOENEN, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (06) :1220-1228
[10]   A protease processing site is essential for prorenin sorting to the regulated secretory pathway [J].
Brechler, V ;
Chu, WN ;
Baxter, JD ;
Thibault, G ;
Reudelhuber, TL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20636-20640