A finite element method for domain decomposition with non-matching grids

被引:163
作者
Becker, R
Hansbo, P
Stenberg, R
机构
[1] Univ Heidelberg, Inst Appl Math, D-69120 Heidelberg, Germany
[2] Chalmers, Dept Appl Mech, S-41296 Gothenburg, Sweden
[3] Helsinki Univ Technol, Inst Math, Helsinki 02015, Finland
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2003年 / 37卷 / 02期
关键词
Nitsche's method; domain decomposition; non-matching grids;
D O I
10.1051/m2an:2003023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we propose and analyse a method for handling interfaces between nonmatching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.
引用
收藏
页码:209 / 225
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1989, 3 INT S DOMAIN DECOM
[2]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[3]  
Aubin J.-P., 1972, APPROXIMATION ELLIPT
[4]  
BAIOCCHI C, 1992, LECT NOTES COMPUT SC, V653, P345
[5]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[6]   FINITE-ELEMENT APPROXIMATION OF THE DIRICHLET PROBLEM USING THE BOUNDARY PENALTY METHOD [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1986, 49 (04) :343-366
[7]  
BECKER R, 2000, NUMERICAL MATH ADV A, P100
[8]  
BECKER R, 1996, J NUMER MATH, V4, P237
[9]  
BERNADI C, 1989, NONLINEAR PARTIAL DI
[10]  
BREZZI F, 1037 IANCNR