Transport in polymer-electrolyte membranes - I. Physical model

被引:281
作者
Weber, AZ [1 ]
Newman, J [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1149/1.1580822
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, a physical model is developed that is semiphenomenological and takes into account Schroeder's paradox. Using the wealth of knowledge contained in the literature regarding polymer-electrolyte membranes as a basis, a novel approach is taken in tying together all of the data into a single coherent theory. This approach involves describing the structural changes of the membrane due to water content, and casting this in terms of capillary phenomena. By treating the membrane in this fashion, Schroeder's paradox can be elucidated. Along with the structural changes, two different transport mechanisms are presented and discussed. These mechanisms, along with the membrane's structural changes, comprise the complete physical model of the membrane. The model is shown to agree qualitatively with different membranes and different membrane forms, and is applicable to modeling perfluorinated sulfonic acid and similar membranes. It is also the first physically based comprehensive model of transport in a membrane that includes a physical description of Schroeder's paradox, and it bridges the gap between the two types of macroscopic models currently in the literature. (C) 2003 The Electrochemical Society.
引用
收藏
页码:A1008 / A1015
页数:8
相关论文
共 59 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[3]   WATER SORPTION AND IONIC-DIFFUSION IN SHORT SIDE-CHAIN PERFLUOROSULFONATE IONOMER MEMBRANES [J].
BOAKYE, EE ;
YEAGER, HL .
JOURNAL OF MEMBRANE SCIENCE, 1992, 69 (1-2) :155-167
[4]   HYDRODYNAMIC MODEL FOR ELECTROOSMOSIS [J].
BRESLAU, BR ;
MILLER, IF .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (04) :554-&
[5]   Investigation of the transversal water profile in nafion membranes in polymer electrolyte fuel cells [J].
Büchi, FN ;
Scherer, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (03) :A183-A188
[6]   THE MOLECULAR-LEVEL INTERPRETATION OF SALT UPTAKE AND ANION TRANSPORT IN NAFION MEMBRANES [J].
CAPECI, SW ;
PINTAURO, PN ;
BENNION, DN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (10) :2876-2882
[7]   PROTON CONDUCTION OF NAFION((R))-117 MEMBRANE BETWEEN 140 K AND ROOM-TEMPERATURE [J].
CAPPADONIA, M ;
ERNING, JW ;
STIMMING, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 376 (1-2) :189-193
[8]   STRUCTURE REORGANIZATION IN POLYMER-FILMS OF NAFION DUE TO SWELLING STUDIED BY SCANNING FORCE MICROSCOPY [J].
CHOMAKOVAHAEFKE, M ;
NYFFENGGER, R ;
SCHMIDT, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1994, 59 (02) :151-153
[9]   Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects [J].
Costamagna, P ;
Srinivasan, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :242-252
[10]   Transport processes of water and protons through micropores [J].
Din, XD ;
Michaelides, EE .
AICHE JOURNAL, 1998, 44 (01) :35-47