Comparison between different LiFePO4 synthesis routes

被引:5
作者
Jugovic, D. [1 ]
Cvjeticanin, N. [2 ]
Mitric, M. [3 ]
Mentus, S. [2 ]
机构
[1] Serbian Acad Arts & Sci, Int Tech Sci, Belgrade, Serbia
[2] Univ Belgrade, Fac Phys Chem, YU-11001 Belgrade, Serbia
[3] Vinca Univ Nucl Sci, Belgrade, Serbia
来源
RESEARCH TRENDS IN CONTEMPORARY MATERIALS SCIENCE | 2007年 / 555卷
关键词
cathode materials; LiFePO4; refinement; sonochemistry; ultrasonic spray pyrolysis;
D O I
10.4028/www.scientific.net/MSF.555.225
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Olivine-type lithium iron phosphate (LiFePO4) powders were synthesized applying three different methods: solid state reaction at high temperature, ultrasonic spray pyrolysis, and sonochemical treatment. The samples were characterized by X-ray powder diffraction (XRPD). Particle morphologies of the obtained powders were determined by scanning electron microscopy (SEM). It was found that structural and microstructural parameters of this material were strongly dependent on the synthesis conditions. We present here the results obtained upon optimization of each procedure for designing this cathode material.
引用
收藏
页码:225 / +
页数:2
相关论文
共 16 条
[1]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[2]   A FUNDAMENTAL PARAMETERS APPROACH TO X-RAY LINE-PROFILE FITTING [J].
CHEARY, RW ;
COELHO, A .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1992, 25 (pt 2) :109-121
[3]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[4]   Synthesis of olivine-type LiFePO4 by emulsion-drying method [J].
Cho, TH ;
Chung, HT .
JOURNAL OF POWER SOURCES, 2004, 133 (02) :272-276
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[7]   Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
JOURNAL OF POWER SOURCES, 2003, 119 :252-257
[8]   LiFePO4 synthesis routes for enhanced electrochemical performance [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) :A231-A233
[9]   On mechanochemical preparation of materials with enhanced characteristics for lithium batteries [J].
Kosova, N ;
Devyatkina, E .
SOLID STATE IONICS, 2004, 172 (1-4) :181-184
[10]   Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials [J].
Morgan, D ;
Van der Ven, A ;
Ceder, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (02) :A30-A32