Network news: prime time for systems biology of the plant circadian clock

被引:48
作者
McClung, C. Robertson [1 ]
Gutierrez, Rodrigo A. [2 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[2] Pontificia Univ Catolica Chile, Dept Genet Mol & Microbiol, Santiago 8331010, Chile
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ARABIDOPSIS-THALIANA; GENE-EXPRESSION; RECIPROCAL REGULATION; TARGETED DEGRADATION; MICROARRAY ANALYSIS; MESSENGER-RNA; TOC1; REGULATOR; RHYTHMS; GROWTH;
D O I
10.1016/j.gde.2010.08.010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network.
引用
收藏
页码:588 / 598
页数:11
相关论文
共 71 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression [J].
Baudry, Antoine ;
Ito, Shogo ;
Song, Young Hun ;
Strait, Alexander A. ;
Kiba, Takatoshi ;
Lu, Sheen ;
Henriques, Rossana ;
Pruneda-Paz, Jose L. ;
Chua, Nam-Hai ;
Tobin, Elaine M. ;
Kay, Steve A. ;
Imaizumi, Takato .
PLANT CELL, 2010, 22 (03) :606-622
[3]   Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development [J].
Covington, Michael F. ;
Maloof, Julin N. ;
Straume, Marty ;
Kay, Steve A. ;
Harmer, Stacey L. .
GENOME BIOLOGY, 2008, 9 (08)
[4]   CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis [J].
Daniel, X ;
Sugano, S ;
Tobin, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :3292-3297
[5]   Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage [J].
Dodd, AN ;
Salathia, N ;
Hall, A ;
Kévei, E ;
Tóth, R ;
Nagy, F ;
Hibberd, JM ;
Millar, AJ ;
Webb, AAR .
SCIENCE, 2005, 309 (5734) :630-633
[6]   FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock [J].
Edwards, KD ;
Anderson, PE ;
Hall, A ;
Salathia, NS ;
Locke, JCW ;
Lynn, JR ;
Straume, M ;
Smith, JQ ;
Millar, AJ .
PLANT CELL, 2006, 18 (03) :639-650
[7]   Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock [J].
Farré, EM ;
Harmer, SL ;
Harmon, FG ;
Yanovsky, MJ ;
Kay, SA .
CURRENT BIOLOGY, 2005, 15 (01) :47-54
[8]   Genome-wide mapping of alternative splicing in Arabidopsis thaliana [J].
Filichkin, Sergei A. ;
Priest, Henry D. ;
Givan, Scott A. ;
Shen, Rongkun ;
Bryant, Douglas W. ;
Fox, Samuel E. ;
Wong, Weng-Keen ;
Mockler, Todd C. .
GENOME RESEARCH, 2010, 20 (01) :45-58
[9]   Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock [J].
Fowler, SG ;
Cook, D ;
Thomashow, ME .
PLANT PHYSIOLOGY, 2005, 137 (03) :961-968
[10]   Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins [J].
Fujiwara, Sumire ;
Wang, Lei ;
Han, Linqu ;
Suh, Sung-Suk ;
Salome, Patrice A. ;
McClung, C. Robertson ;
Somers, David E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (34) :23073-23083