Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development

被引:606
作者
Covington, Michael F. [1 ]
Maloof, Julin N. [1 ]
Straume, Marty [2 ]
Kay, Steve A. [3 ]
Harmer, Stacey L. [1 ]
机构
[1] Univ Calif Davis, Coll Biol Sci, Dept Plant Biol, Davis, CA 95616 USA
[2] Univ Virginia Hlth Sci Syst, Ctr Biomath Technol, Charlottesville, VA 22908 USA
[3] Scripps Res Inst, Dept Biochem, La Jolla, CA 92037 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1186/gb-2008-9-8-r130
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: As nonmotile organisms, plants must rapidly adapt to ever-changing environmental conditions, including those caused by daily light/dark cycles. One important mechanism for anticipating and preparing for such predictable changes is the circadian clock. Nearly all organisms have circadian oscillators that, when they are in phase with the Earth's rotation, provide a competitive advantage. In order to understand how circadian clocks benefit plants, it is necessary to identify the pathways and processes that are clock controlled. Results: We have integrated information from multiple circadian microarray experiments performed on Arabidopsis thaliana in order to better estimate the fraction of the plant transcriptome that is circadian regulated. Analyzing the promoters of clock-controlled genes, we identified circadian clock regulatory elements correlated with phase-specific transcript accumulation. We have also identified several physiological pathways enriched for clock-regulated changes in transcript abundance, suggesting they may be modulated by the circadian clock. Conclusion: Our analysis suggests that transcript abundance of roughly one-third of expressed A. thaliana genes is circadian regulated. We found four promoter elements, enriched in the promoters of genes with four discrete phases, which may contribute to the time-of-day specific changes in the transcript abundance of these genes. Clock-regulated genes are over-represented among all of the classical plant hormone and multiple stress response pathways, suggesting that all of these pathways are influenced by the circadian clock. Further exploration of the links between the clock and these pathways will lead to a better understanding of how the circadian clock affects plant growth and leads to improved fitness.
引用
收藏
页数:18
相关论文
共 96 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in arabidopsis [J].
Bancos, S ;
Szatmari, AM ;
Castle, J ;
Kozma-Bognar, L ;
Shibata, K ;
Yokota, T ;
Bishop, GJ ;
Nagy, F ;
Szekeres, M .
PLANT PHYSIOLOGY, 2006, 141 (01) :299-309
[4]   DIURNAL-VARIATIONS IN ABSCISIC-ACID CONTENT AND STOMATAL RESPONSE TO APPLIED ABSCISIC-ACID IN LEAVES OF IRRIGATED AND NON-IRRIGATED ARBUTUS-UNEDO PLANTS UNDER NATURALLY FLUCTUATING ENVIRONMENTAL-CONDITIONS [J].
BURSCHKA, C ;
TENHUNEN, JD ;
HARTUNG, W .
OECOLOGIA, 1983, 58 (01) :128-131
[5]   REGULATION OF KEY ENZYMES OF SUCROSE BIOSYNTHESIS IN SOYBEAN LEAVES - EFFECT OF DARK AND LIGHT CONDITIONS AND ROLE OF GIBBERELLINS AND ABSCISIC-ACID [J].
CHEIKH, N ;
BRENNER, ML .
PLANT PHYSIOLOGY, 1992, 100 (03) :1230-1237
[6]   Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana [J].
Cheng, XF ;
Wang, ZY .
PLANT JOURNAL, 2005, 43 (05) :758-768
[7]   Multiple sequence alignment with the Clustal series of programs [J].
Chenna, R ;
Sugawara, H ;
Koike, T ;
Lopez, R ;
Gibson, TJ ;
Higgins, DG ;
Thompson, JD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3497-3500
[8]   Integration of abscisic acid signalling into plant responses [J].
Christmann, A. ;
Moes, D. ;
Himmelbach, A. ;
Yang, Y. ;
Tang, Y. ;
Grill, E. .
PLANT BIOLOGY, 2006, 8 (03) :314-325
[9]  
CHURCHILL GA, 1994, GENETICS, V138, P963
[10]   A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression [J].
Cohen, BA ;
Mitra, RD ;
Hughes, JD ;
Church, GM .
NATURE GENETICS, 2000, 26 (02) :183-186