A convex optimization algorithm for frequency-domain identification in the v-gap metric

被引:4
作者
Geng, Li-Hui [1 ]
Cui, Shi-Gang [1 ]
Zhao, Li [1 ]
Lin, Hai-Qi [1 ]
机构
[1] Tianjin Univ Technol & Educ, Sch Automat & Elect Engn, Tianjin Key Lab Informat Sensing & Intelligent Co, Tianjin 300222, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
convex optimization; frequency-domain identification; v-gap metric; normalized right graph symbol; IN-VARIABLES MODELS; WORST-CASE IDENTIFICATION; SYSTEM-IDENTIFICATION; L-2-OPTIMAL IDENTIFICATION; ROBUST-CONTROL; H-INFINITY; UNCERTAINTY; STABILITY; DESIGN;
D O I
10.1002/acs.2478
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a convex optimization algorithm to minimize the v-gap metric for parameter estimation of a SISO system using frequency-domain measurements. According to a geometrical interpretation for this metric, its evaluation for two SISO linear systems is the supreme of sine values of the apertures between their normalized right graph symbols. As a result, the minimization of the v-gap metric becomes that of the maximum of sine values of those apertures at sampling frequencies and can be efficiently solved by a sequence of feasibility problems with a decreasing line search. Compared with the related algorithms, the proposed one has global convergence and much lower computational loads. Finally, a numerical simulation shows the effectiveness of the proposed algorithm. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:362 / 371
页数:10
相关论文
共 33 条
  • [1] Identifiability of errors in variables dynamic systems
    Agueero, Juan C.
    Goodwin, Graham C.
    [J]. AUTOMATICA, 2008, 44 (02) : 371 - 382
  • [2] Anderson BDO, 2001, IEEE DECIS CONTR P, P3069, DOI 10.1109/CDC.2001.980287
  • [3] [Anonymous], SYSTEM IDENTIFICATIO
  • [4] Boyds S., 1994, LINEAR MATRIX INEQUA
  • [5] Controller discretization: A gap metric framework for analysis and synthesis
    Cantoni, M
    Vinnicombe, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) : 2033 - 2039
  • [6] Robustness Analysis for Feedback Interconnections of Distributed Systems via Integral Quadratic Constraints
    Cantoni, Michael
    Jonsson, Ulf T.
    Kao, Chung-Yao
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (02) : 302 - 317
  • [7] Algorithms for worst case identification H∞ in the ν-gap metric
    Date, P
    Vinnicombe, G
    [J]. AUTOMATICA, 2004, 40 (06) : 995 - 1002
  • [8] Date P., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P3230, DOI 10.1109/CDC.1999.827767
  • [9] Relations between uncertainty structures in identification for robust control
    Douma, SG
    Van den Hof, PMJ
    [J]. AUTOMATICA, 2005, 41 (03) : 439 - 457
  • [10] Dous LQ, 2009, SCI CHINA SER F, V52, P1120