Mechanisms of Large Actuation Strain in Dielectric Elastomers

被引:254
作者
Koh, Soo Jin Adrian [1 ,2 ,3 ,4 ]
Li, Tiefeng [1 ,5 ]
Zhou, Jinxiong [1 ,6 ,7 ]
Zhao, Xuanhe [1 ,8 ]
Hong, Wei [9 ]
Zhu, Jian [1 ]
Suo, Zhigang [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Inst High Performance Comp, Singapore 138632, Singapore
[3] Natl Univ Singapore, Engn Sci Programme, Singapore 119260, Singapore
[4] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 119260, Singapore
[5] Zhejiang Univ, Inst Appl Mech, Hangzhou 310027, Zhejiang, Peoples R China
[6] Xi An Jiao Tong Univ, MOE Key Lab Strength & Vibrat, Xian 710049, Peoples R China
[7] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China
[8] Duke Univ, Soft Act Mat Lab, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[9] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
dielectric properties; elastomers; high performance polymers; strain; stimuli-sensitive polymers; theory; thermodynamics; tension; BEHAVIOR;
D O I
10.1002/polb.22223
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Subject to a voltage, a dielectric elastomer (DE) deforms. Voltage-induced strains of above 100% have been observed when DEs are prestretched, and for DEs of certain network structures. Understanding mechanisms of large actuation strains is an active area of research. We propose that the voltage- stretch response of DEs may be modified by prestretch, or by using polymers with "short" chains. This modification results in suppression or elimination of electromechanical instability, leading to large actuation strains. We propose a method to select and design a DE, such that the actuation strain is maximized. The theoretical predictions agree well with existing experimental data. The theory may contribute to the development of DEs with exceptional performance. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 504-515, 2011
引用
收藏
页码:504 / 515
页数:12
相关论文
共 43 条
[1]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[2]   A general relation between the ranges of stability of electrostatic actuators under charge or voltage control [J].
Bochobza-Degani, O ;
Elata, D ;
Nemirovsky, Y .
APPLIED PHYSICS LETTERS, 2003, 82 (02) :302-304
[3]   Advances in Dielectric Elastomers for Actuators and Artificial Muscles [J].
Brochu, Paul ;
Pei, Qibing .
MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (01) :10-36
[4]   Eyeball pseudo-muscular actuators for an android face [J].
Carpi, F ;
De Rossi, D .
SMART STRUCTURES AND MATERIALS 2005: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES( EAPAD), 2005, 5759 :16-21
[5]  
Carpi F, 2008, DIELECTRIC ELASTOMERS AS ELECTROMECHANICAL TRANSDUCERS: FUNDAMENTALS, MATERIALS, DEVICES, MODELS AND APPLICATIONS OF AN EMERGING ELECTROACTIVE POLYMER TECHNOLOGY, P1
[6]   Millimetre-scale bubble-like dielectric elastomer actuators [J].
Carpi, Federico ;
Frediani, Gabriele ;
Tarantino, Sergio ;
De Rossi, Danilo .
POLYMER INTERNATIONAL, 2010, 59 (03) :407-414
[7]   THE EFFECT OF ENTANGLEMENTS IN RUBBER ELASTICITY [J].
EDWARDS, SF ;
VILGIS, T .
POLYMER, 1986, 27 (04) :483-492
[8]   Electrically actuated elastomers for electro-optical modulators [J].
Galler, N. ;
Ditlbacher, H. ;
Steinberger, B. ;
Hohenau, A. ;
Dansachmueller, M. ;
Camacho-Gonzales, F. ;
Bauer, S. ;
Krenn, J. R. ;
Leitner, A. ;
Aussenegg, F. R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (01) :7-10
[9]   A nonlinear model for dielectric elastomer membranes [J].
Goulbourne, N ;
Mockensturm, E ;
Frecker, M .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (06) :899-906
[10]   Interpenetrating polymer networks for high-performance electroelastomer artificial muscles [J].
Ha, SM ;
Yuan, W ;
Pei, QB ;
Pelrine, R ;
Stanford, S .
ADVANCED MATERIALS, 2006, 18 (07) :887-+