Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection

被引:393
作者
Bao, Qi [1 ,2 ]
Zhang, Dun [1 ]
Qi, Peng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shandong Prov Key Lab Corros Sci, Inst Oceanol, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Silver nanoparticle; Graphene oxide nanosheet; Nanocomposites; Antibacterial; Disinfection; Paper-like material; CARBON NANOTUBES; ANTIBACTERIAL ACTIVITY; NANOMATERIALS; REDUCTION; COLLOIDS; FILMS; PAPER; IONS;
D O I
10.1016/j.jcis.2011.05.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) nanosheets impregnated with silver nanoparticles (Ag NPs) were fabricated by the in situ reduction of adsorbed Ag+ by hydroquinone (HQ) in a citrate buffer solution. Paper-like Ag NP/GO composite materials were fabricated owing to convenient structure characterization and antibacterial tests. The Ag NP/GO composites were characterized by UV-vis spectra, transmission electron microscope, electron diffraction, Raman spectroscopy, and field emission scanning electron microscope coupled with Energy Dispersive Spectrometer. Antibacterial activity was tested using Escherichia coli and Staphylococcus aureus as model strains of Gram negative and Gram positive bacteria, respectively. The as-prepared composites exhibit stronger antibacterial activity against both. The Ag NP/GO composites performed efficiently in bringing down the count of E. coli from 10(6) cfu/mL to zero with 45 mg/L GO in water. The micron-scale GO nanosheets (lateral size) enable them to be easily deposited on porous ceramic membranes during water filtration; making them a promising biocidal material for water disinfection. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 40 条
[1]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[2]   Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films [J].
Bryaskova, Rayna ;
Pencheva, Daniela ;
Kale, Girish M. ;
Lad, Umesh ;
Kantardjiev, T. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 349 (01) :77-85
[3]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[4]   One-Step Synthesis of Graphene-Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties [J].
Chen, Sheng ;
Zhu, Junwu ;
Wang, Xin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (27) :11829-11834
[5]   The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J].
Choi, Okkyoung ;
Deng, Kathy Kanjun ;
Kim, Nam-Jung ;
Ross, Louis, Jr. ;
Surampalli, Rao Y. ;
Hu, Zhiqiang .
WATER RESEARCH, 2008, 42 (12) :3066-3074
[6]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[7]   A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties [J].
Dastjerdi, Roya ;
Montazer, Majid .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 79 (01) :5-18
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Silver nanoparticle-E. coli colloidal interaction in water and effect on E-coli survival [J].
Dror-Ehre, A. ;
Mamane, H. ;
Belenkova, T. ;
Markovich, G. ;
Adin, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 339 (02) :521-526
[10]   Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives [J].
Fu, Xiaoqi ;
Bei, Fengli ;
Wang, Xin ;
O'Brien, Stephen ;
Lombardi, John R. .
NANOSCALE, 2010, 2 (08) :1461-1466