Advances towards QH-mode viability for ELM-stable operation in ITER

被引:116
作者
Garofalo, A. M. [1 ]
Solomon, W. M. [2 ]
Park, J. -K. [2 ]
Burrell, K. H. [1 ]
DeBoo, J. C. [1 ]
Lanctot, M. J. [3 ]
McKee, G. R. [4 ]
Reimerdes, H. [3 ]
Schmitz, L. [5 ]
Schaffer, M. J. [1 ]
Snyder, P. B. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[4] Univ Wisconsin, Dept Engn Phys, Madison, WI USA
[5] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
NEOCLASSICAL TEARING MODES; DIII-D TOKAMAK; POLOIDAL ROTATION; PLASMAS; FIELD; CONFINEMENT; STABILITY; REGIME; SHEAR;
D O I
10.1088/0029-5515/51/8/083018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.
引用
收藏
页数:10
相关论文
共 34 条
[11]   Observation of Plasma Rotation Driven by Static Nonaxisymmetric Magnetic Fields in a Tokamak [J].
Garofalo, A. M. ;
Burrell, K. H. ;
DeBoo, J. C. ;
deGrassie, J. S. ;
Jackson, G. L. ;
Lanctot, M. ;
Reimerdes, H. ;
Schaffer, M. J. ;
Solomon, W. M. ;
Strait, E. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (19)
[12]  
GAROFALO AM, 2010, P 23 INT C FUS EN DA
[13]   Quiescent double barrier regime in the DIII-D tokamak [J].
Greenfield, CM ;
Burrell, KH ;
DeBoo, JC ;
Doyle, EJ ;
Stallard, BW ;
Synakowski, EJ ;
Fenzi, C ;
Gohil, P ;
Groebner, RJ ;
Lao, LL ;
Makowski, MA ;
McKee, GR ;
Moyer, RA ;
Rettig, CL ;
Rhodes, TL ;
Pinsker, RI ;
Staebler, GM ;
West, WP .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4544-4547
[14]   FLOW SHEAR-INDUCED FLUCTUATION SUPPRESSION IN FINITE ASPECT RATIO SHAPED TOKAMAK PLASMA [J].
HAHM, TS ;
BURRELL, KH .
PHYSICS OF PLASMAS, 1995, 2 (05) :1648-1651
[15]  
JACKSON GL, 2003, P 30 EPS C CONTR FUS, V27, P85003
[16]   Control of neoclassical tearing modes in DIII-D [J].
La Haye, RJ ;
Günter, S ;
Humphreys, DA ;
Lohr, J ;
Luce, TC ;
Maraschek, ME ;
Petty, CC ;
Prater, R ;
Scoville, JT ;
Strait, EJ .
PHYSICS OF PLASMAS, 2002, 9 (05) :2051-2060
[17]   Investigation of pellet-triggered MHD events in ASDEX upgrade and JET [J].
Lang, P. T. ;
Lackner, K. ;
Maraschek, M. ;
Alper, B. ;
Belonohy, E. ;
Gal, K. ;
Hobirk, J. ;
Kallenbach, A. ;
Kalvin, S. ;
Kocsis, G. ;
von Thun, C. P. Perez ;
Suttrop, W. ;
Szepesi, T. ;
Wenninger, R. ;
Zohm, H. .
NUCLEAR FUSION, 2008, 48 (09)
[18]  
LIANG Y, 2009, 36 EPS C PLASM PHYS, V33
[19]   Wide-field turbulence imaging with beam emission spectroscopy [J].
McKee, G. R. ;
Fonck, R. J. ;
Shafer, M. W. ;
Uzun-Kaymak, I. U. ;
Yan, Z. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)
[20]   Computation of three-dimensional tokamak and spherical torus equilibria [J].
Park, Jong-Kyu ;
Boozer, Allen H. ;
Glasser, Alan H. .
PHYSICS OF PLASMAS, 2007, 14 (05)