Background-Cardiac surgery with cardiopulmonary bypass (CPB) and cardioplegic arrest has been associated with myocardial edema attributable to vascular permeability, which is regulated in part by thrombin-induced alterations in cellular junctions. Aprotinin has been demonstrated to prevent activation of the thrombin protease-activated receptor, and we hypothesized that aprotinin preserves myocardial cellular junctions and prevents myocardial edema in a porcine model of regional ischemia and cardioplegic arrest. Methods and Results-Fourteen pigs were subjected to 30 minutes of regional ischemia, followed by 60 minutes of CPB, with 45 minutes of crystalloid cardioplegia, then 90 minutes of post-CPB reperfusion. The treatment group (n=7) was administered aprotinin (40 000 kallikrein inhibitor units [KIU]/kg loading dose, 40 000 KIU/kg pump prime, and 10 000 KIU/kg per hour continuous infusion). Control animals (n=7) received normal saline. Myocardial vascular endothelial (VE)-cadherin, beta-catenin and gamma-catenin, and associated mitogen-activated protein kinase (MAPK) pathways were assessed by immunoblot and immunoprecipitation. Histologic analysis of the cellular junctions was done by immunofluorescence. Myocardial tissue water content was measured. VE-cadherin, beta-catenin, and gamma-catenin levels were significantly greater in the aprotinin group (all P<0.05). Immunfluorescence confirmed that aprotinin prevented loss of coronary endothelial adherens junction continuity. Aprotinin reduced tyrosine phosphorylation in myocardial tissue sections. Phospho-p38 activity was approximate to 30% lower in the aprotinin group (P=0.007). The aprotinin group demonstrated decreased myocardial tissue water content (81.2 +/- 0.5% versus 83.5 +/- 0.3%; P=0.01) and reduced intravenous fluid requirements (2.9 +/- 0.2 L versus 4.0 +/- 0.4 L; P=0.03). Conclusions-Aprotinin preserves adherens junctions after regional ischemia and cardioplegic arrest through a mechanism potentially involving the p38 MAPK pathway, resulting in preservation of the VE barrier and reduced myocardial tissue edema.