Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis

被引:82
作者
Avarbock, A [1 ]
Avarbock, D [1 ]
Teh, JS [1 ]
Buckstein, M [1 ]
Wang, ZM [1 ]
Rubin, H [1 ]
机构
[1] Univ Penn, Sch Med, Dept Med, Div Infect Dis, Philadelphia, PA 19104 USA
关键词
D O I
10.1021/bi0505316
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dual-function Rel(Mtb) protein from Mycobacterium tuberculosis catalyzes both the synthesis and hydrolysis of (p)ppGpp, the effector of the stringent response. In our previous work [Avarbock, D., Avarbock, A., and Rubin, H. (2000) Biochemistry 39, 11640], we presented evidence that the Rel(Mtb) protein might catalyze its two opposing reactions at distinct active sites. In the study presented here, we purified and characterized fragments of the 738-amino acid Rel(Mtb) protein and confirmed the hypothesis that amino acid fragment 1-394 contains both synthesis and hydrolysis activities, amino acid fragment 87-394 contains only (p)ppGpp synthesis activity, and amino acid fragment 1-181 contains only (p)ppGpp hydrolysis activity. Mutation of specific residues within fragment 1-394 results in the loss of synthetic activity and retention of hydrolysis (G241E and H344Y) or loss of hydrolytic activity with retention of synthesis (H80A and D81A). The C-terminally cleaved Rel(Mtb) fragment proteins have basal activities similar to that of full-length Rel(Mtb), but are no longer regulated by the previously described Rel(Mtb) activating complex (RAC). Residues within the C-terminus of Rel(Mtb) (D632A and C633A) are shown to have a role in interaction with the RAC. Additionally, size exclusion chromatography indicates Rel(Mtb) forms trimers and removal of the C-terminus results in monomers. The C-terminal deletion, 1-394, which exists as a mixture of monomers and trimers, will dissociate from the trimer state upon the addition of substrate. Furthermore, the trimer state of fragment 1-394 appears to be a catalytically less efficient state than the monomer state.
引用
收藏
页码:9913 / 9923
页数:11
相关论文
共 21 条
  • [21] Dimerization of the RelA protein of Escherichia coli
    Yang, XM
    Ishiguro, EE
    [J]. BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2001, 79 (06): : 729 - 736