Prediction limit estimation for neural network models

被引:8
作者
Chinnam, RB [1 ]
Ding, J [1 ]
机构
[1] N Dakota State Univ, Dept Mfg Engn, Fargo, ND 58105 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1998年 / 9卷 / 06期
关键词
estimation; feedforward neural networks; prediction intervals; prediction limits; self-organizing feature maps;
D O I
10.1109/72.728401
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel method for estimation of prediction limits for global and local approximating neural networks is presented. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods, and calculates limits that indicate the extent to which one can rely on predictions for making future decisions.
引用
收藏
页码:1515 / 1522
页数:8
相关论文
共 10 条
  • [1] Confidence interval prediction for neural network models
    Chryssolouris, G
    Lee, M
    Ramsey, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01): : 229 - 232
  • [2] DESIENO D, 1988, P IEEE INT C NEURAL, V1, P117
  • [3] Dougherty ER, 1990, PROBABILITY STAT ENG
  • [4] Haykin S., 1994, NEURAL NETWORKS COMP
  • [5] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [6] JOHNSTONE JK, 1994, MATH SURFACES, V5, P3
  • [7] SELF-ORGANIZED FORMATION OF TOPOLOGICALLY CORRECT FEATURE MAPS
    KOHONEN, T
    [J]. BIOLOGICAL CYBERNETICS, 1982, 43 (01) : 59 - 69
  • [8] THE SELF-ORGANIZING MAP
    KOHONEN, T
    [J]. PROCEEDINGS OF THE IEEE, 1990, 78 (09) : 1464 - 1480
  • [9] USING RADIAL BASIS FUNCTIONS TO APPROXIMATE A FUNCTION AND ITS ERROR-BOUNDS
    LEONARD, JA
    KRAMER, MA
    UNGAR, LH
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (04): : 624 - 626
  • [10] Fast Learning in Networks of Locally-Tuned Processing Units
    Moody, John
    Darken, Christian J.
    [J]. NEURAL COMPUTATION, 1989, 1 (02) : 281 - 294