On synchronization in scale-free dynamical networks

被引:52
作者
Fan, J [1 ]
Wang, XF [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
synchronization; scale-free; robustness; multi-centre;
D O I
10.1016/j.physa.2004.09.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in complex network research have stimulated increasing interests in understanding the relationship between the topology and dynamics of complex networks. in this work, we study the synchronizability of a class of continuous-time dynamical networks with scale-free topologies. Furthermore, we propose a synchronization-optimal growth topology model. We also investigate the robustness of the synchronizability of the scale-free dynamical networks with respect to random and specific removal of nodes. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 23 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]   The diameter of a scale-free random graph [J].
Bollobás, B ;
Riordan, O .
COMBINATORICA, 2004, 24 (01) :5-34
[5]  
CHUA LO, 1993, CNA PARADIGM COMPLEX
[6]   Synchronous chaos in coupled map lattices with small-world interactions [J].
Gade, PM ;
Hu, CK .
PHYSICAL REVIEW E, 2000, 62 (05) :6409-6413
[7]  
HONG H, 2002, PHYS REV E, V5
[8]   Instability and controllability of linearly coupled oscillators: Eigenvalue analysis [J].
Hu, G ;
Yang, JZ ;
Liu, WJ .
PHYSICAL REVIEW E, 1998, 58 (04) :4440-4453
[9]   Self-organized and driven phase synchronization in coupled maps [J].
Jalan, S ;
Amritkar, RE .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4
[10]  
JALAN S, 2002, ARXIVNLIN0201051