Synchronous chaos in coupled map lattices with small-world interactions

被引:185
作者
Gade, PM [1 ]
Hu, CK [1 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6409
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In certain physical situations, extensive interactions arise naturally in systems. We consider one such situation, namely, small-world couplings. We show that, for a fixed fraction of nonlocal couplings, synchronous chaos is always a stable attractor in the thermodynamic limit. We point out that randomness helps synchronization. We also show that there is a size dependent bifurcation in the collective behavior in such systems.
引用
收藏
页码:6409 / 6413
页数:5
相关论文
共 19 条
  • [1] COLLECTIVE BEHAVIORS IN SPATIALLY EXTENDED SYSTEMS WITH LOCAL INTERACTIONS AND SYNCHRONOUS UPDATING
    CHATE, H
    MANNEVILLE, P
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (01): : 1 - 60
  • [2] Crutchfield J., 1987, DIRECTIONS CHAOS
  • [3] Bifurcations and chaos for the quasiperiodic bouncing ball
    deOliveira, CR
    Goncalves, PS
    [J]. PHYSICAL REVIEW E, 1997, 56 (04): : 4868 - 4871
  • [4] Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
    Fink, KS
    Johnson, G
    Carroll, T
    Mar, D
    Pecora, L
    [J]. PHYSICAL REVIEW E, 2000, 61 (05): : 5080 - 5090
  • [5] Synchronization and coherence in thermodynamic coupled map lattices with intermediate-range coupling
    Gade, PM
    Hu, CK
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 4966 - 4969
  • [6] Synchronization of oscillators with random nonlocal connectivity
    Gade, PM
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 64 - 70
  • [7] COUPLED MAPS ON TREES
    GADE, PM
    CERDEIRA, HA
    RAMASWAMY, R
    [J]. PHYSICAL REVIEW E, 1995, 52 (03): : 2478 - 2485
  • [8] SPATIALLY PERIODIC-ORBITS IN COUPLED-MAP LATTICES
    GADE, PM
    AMRITKAR, RE
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 143 - 154
  • [9] GLOBALLY COUPLED CHAOS VIOLATES THE LAW OF LARGE NUMBERS BUT NOT THE CENTRAL-LIMIT-THEOREM
    KANEKO, K
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (12) : 1391 - 1394
  • [10] Mutual synchronization and clustering in randomly coupled chaotic dynamical networks
    Manrubia, SC
    Mikhailov, AS
    [J]. PHYSICAL REVIEW E, 1999, 60 (02): : 1579 - 1589