Mutual synchronization and clustering in randomly coupled chaotic dynamical networks

被引:95
作者
Manrubia, SC [1 ]
Mikhailov, AS [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.1579
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce and study systems of randomly coupled maps where the relevant parameter is the degree of connectivity in the system. Global (almost-) synchronized states are found (equivalent to the synchronization observed in globally coupled maps) until a certain critical threshold for the connectivity is reached. We further show that not only the average connectivity, but also the architecture of the couplings is responsible for the cluster structure observed. We analyze the different phases of the system and use various correlation measures in order to detect ordered nonsynchronized states. Finally, it is shown that the system displays a,dynamical hierarchical clustering which allows the definition of emerging graphs. [S1063-651X(99)04908-9].
引用
收藏
页码:1579 / 1589
页数:11
相关论文
共 32 条
[1]   Globally coupled maps with asynchronous updating [J].
Abramson, G ;
Zanette, DH .
PHYSICAL REVIEW E, 1998, 58 (04) :4454-4460
[2]  
[Anonymous], 1997, CHAOS
[3]  
[Anonymous], ORIGIN ORDER
[4]   Controlling turbulence in the complex Ginzburg-Landau equation .2. Two-dimensional systems [J].
Battogtokh, D ;
Preusser, A ;
Mikhailov, A .
PHYSICA D, 1997, 106 (3-4) :327-362
[5]   PARALLEL COMPUTER-SIMULATION OF NEAREST-NEIGHBOUR INTERACTION IN A SYSTEM OF NEPHRONS [J].
BOHR, H ;
JENSEN, KS ;
PETERSEN, T ;
RATHJEN, B ;
MOSEKILDE, E ;
HOLSTEINRATHLOU, NH .
PARALLEL COMPUTING, 1989, 12 (01) :113-120
[6]   Modelling coevolution in multispecies communities [J].
Caldarelli, G ;
Higgs, PG ;
McKane, AJ .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 193 (02) :345-358
[7]   Evolution of random networks [J].
Christensen, K ;
Donangelo, R ;
Koiller, B ;
Sneppen, K .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2380-2383
[8]   Collective-induced computation [J].
Delgado, J ;
Sole, RV .
PHYSICAL REVIEW E, 1997, 55 (03) :2338-2344
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]  
FUJISAKA H, 1985, PROG THEOR PHYS, V74, P919