Controlling turbulence in the complex Ginzburg-Landau equation .2. Two-dimensional systems

被引:53
作者
Battogtokh, D
Preusser, A
Mikhailov, A
机构
[1] MAX PLANCK GESELL,FRITZ HABER INST,D-14195 BERLIN,DAHLEM,GERMANY
[2] MAX PLANCK INST MOL GENET,GEMEINSAMES RECHENZENTRUM BERLIN,D-14195 BERLIN,GERMANY
来源
PHYSICA D | 1997年 / 106卷 / 3-4期
关键词
D O I
10.1016/S0167-2789(97)00046-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Turbulence in oscillatory distributed systems can be controlled by introducing a delayed global feedback and adjusting the feedback intensity and the delay time. We investigate influence of global feedbacks on turbulence in two-dimensional systems described by the complex Ginzburg-Landau equation. Inside a synchronization window, application of such feedbacks leads to destruction of phase flips and spiral waves, appearance of breathing and stationary cellular structures or stripes, and development of localized turbulent bubbles on the background of uniform oscillations.
引用
收藏
页码:327 / 362
页数:36
相关论文
共 37 条
[1]   CORE INSTABILITY AND SPATIOTEMPORAL INTERMITTENCY OF SPIRAL WAVES IN OSCILLATORY MEDIA [J].
ARANSON, I ;
KRAMER, L ;
WEBER, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2316-2319
[2]   THEORY OF INTERACTION AND BOUND-STATES OF SPIRAL WAVES IN OSCILLATORY MEDIA [J].
ARANSON, IS ;
KRAMER, L ;
WEBER, A .
PHYSICAL REVIEW E, 1993, 47 (05) :3231-3241
[3]   Controlling turbulence in the complex Ginzburg-Landau equation [J].
Battogtokh, D ;
Mikhailov, A .
PHYSICA D, 1996, 90 (1-2) :84-95
[4]  
BATTOGTOKH D, COMPUTERS VIDEOS TUR
[5]   The diversity of steady state solutions of the complex Ginzburg-Landau equation [J].
Bazhenov, M ;
Bohr, T ;
Gorshkov, K ;
Rabinovich, M .
PHYSICS LETTERS A, 1996, 217 (2-3) :104-110
[6]   FORMATIONS OF SPATIAL PATTERNS AND HOLES IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
BEKKI, N ;
NOZAKI, K .
PHYSICS LETTERS A, 1985, 110 (03) :133-135
[7]  
BODENSHATZ E, 1990, NEW TENDS NONLINEAR
[8]   TRANSITION TO TURBULENCE IN A DISCRETE GINZBURG-LANDAU MODEL [J].
BOHR, T ;
PEDERSEN, AW ;
JENSEN, MH .
PHYSICAL REVIEW A, 1990, 42 (06) :3626-3629
[9]   STABILITY OF THE BEKKI-NOZAKI HOLE SOLUTIONS TO THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICS LETTERS A, 1992, 171 (3-4) :183-188
[10]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204