Quasilinearization and rate of convergence for higher-order nonlinear periodic boundary-value problems

被引:30
作者
Cabada, A [1 ]
Nieto, JJ [1 ]
机构
[1] Univ Santiago Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela, Spain
关键词
quasilinearization; rapid convergence; upper and lower solutions; higher-order periodic problems;
D O I
10.1023/A:1026413921997
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the convergence of a sequence of approximate solutions for the following higher-order nonlinear periodic boundary-value problem: u((n))(t) =f(t, u(t)), t epsilon I=[0, T], u((i))(0) - u((i))(T)= c(i), i = 0,..., n - 1. Here, f epsilon C(I x R, R) is such that, for some k greater than or equal to 1, a(1)f/au(1) exists and is a continuous function for i = 0, 1,..., k. We prove that it is possible to construct two sequences of approximate solutions converging to the extremal solution with rate of convergence of order k.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 15 条
[1]  
Bellmann R., 1965, QUASILINEARIZATION N
[2]  
BELLMANN R, 1973, METHODS NONLINEAR AN, V2
[3]  
BELLMANN RE, 1983, QUASILINEARIZATION I
[4]   THE METHOD OF LOWER AND UPPER SOLUTIONS FOR 2ND, 3RD, 4TH, AND HIGHER-ORDER BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 185 (02) :302-320
[5]   THE METHOD OF LOWER AND UPPER SOLUTIONS FOR 3RD-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) :568-589
[6]   Maximum principles for fourth and sixth order periodic boundary value problems [J].
Cabada, A ;
Lois, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (10) :1161-1171
[7]   Rapid convergence of the iterative technique for first order initial value problems [J].
Cabada, A ;
Nieto, JJ .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 87 (2-3) :217-226
[8]  
CABADA A, 1995, P INT C DIFF EQ LISB, P295
[9]  
CABADA A., 1994, J. Appl. Math. Stoch. Anal., V7, P33
[10]  
LAKSHMIKANTHAM V, 1995, NONLINEAR TIMES DIGE, V2, P1