molecular electronics;
nanotechnology;
protein engineering;
self-assembly;
viruses;
D O I:
10.1002/smll.200500021
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
A three-dimensional bottom-up self-assembly technique is developed to use biomolecules such as DNA as scaffolds. The use of viruses as nanoscale scaffolds for devices provide the exquisite control of positioning on the nanoscale. The efficacy of the approach is tested on 3D conductive molecular networks using cowpea mosaic virus (CPMV) as a scaffold. The conductance of the molecular network self-assembled on a single virus is measured using scanning tunneling microscopy (STM), which shows isolated conductive viral nanoblocks (VNB) attached to a gold substrate through a conducting molecule inserted in an insulating C11 matrix. It is observed that red connections are the least important in the formation of the network, such that their removal decreases the network conductance by just 6% to 94% of the maximum. This bottom-up approach uses different types of molecules for functions such as wires, switches, and diodes to build electronic circuits to increase the theoretical device density.