Stem cell approaches for the treatment of renal failure

被引:42
作者
Brodie, JC [1 ]
Humes, HD [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1124/pr.57.3.3
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The inadequacy of current treatment modalities and insufficiency of donor organs for cadaveric transplantation have driven a search for improved methods of dealing with renal failure. The rising concept of cell-based therapeutics has provided a framework around which new approaches are being generated, and its combination with advances in stem cell research stands to bring both fields to clinical fruition. This budding partnership is presently in its very early stages, but an examination of the cell-based therapies currently under development clearly shows the magnitude of the role that stem cells will ultimately play. The issue over reports of unexpected plasticity in adult stem cell differentiation remains a focus of debate, and evidence for bone marrow-derived stem cell contributions to renal repair has been challenged. The search for adult renal stem cells, which could have a considerable impact on much of the work discussed here, appears to be narrowing. The use of embryonic tissue in research continues to provide valuable insights but will be the subject of intense societal scrutiny and debate before it reaches the stage of clinical application. Embryonic stem (ES) cells, with their ability to generate all, or nearly all, of the cell types in the adult body and a possible source of cells genetically identical to the donor, hold great promise but face ethical and political hurdles for human use. Immunoisolation of heterologous cells by encapsulation creates opportunities for their safe use as a component of implanted or ex vivo devices.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 129 条
[1]   Stem cells in the kidney [J].
Al-Awqati, Q ;
Oliver, JA .
KIDNEY INTERNATIONAL, 2002, 61 (02) :387-395
[2]   An introduction to stem cells [J].
Alison, MR ;
Poulsom, R ;
Forbes, S ;
Wright, NA .
JOURNAL OF PATHOLOGY, 2002, 197 (04) :419-423
[3]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[4]   Renal therapy using tissue-engineered constructs and gene delivery [J].
Amiel, GE ;
Yoo, JJ ;
Atala, A .
WORLD JOURNAL OF UROLOGY, 2000, 18 (01) :71-79
[5]   Can stem cells cross lineage boundaries? [J].
Anderson, DJ ;
Gage, FH ;
Weissman, IL .
NATURE MEDICINE, 2001, 7 (04) :393-395
[6]   ETHICAL GUIDELINES FOR THE USE OF HUMAN EMBRYONIC OR FETAL TISSUE FOR EXPERIMENTAL AND CLINICAL NEUROTRANSPLANTATION AND RESEARCH [J].
BOER, GJ .
JOURNAL OF NEUROLOGY, 1994, 242 (01) :1-13
[7]   Acute renal failure. I. Relative importance of proximal vs. distal tubular injury [J].
Bonventre, JV ;
Brezis, M ;
Siegel, N ;
Rosen, S ;
Portilla, D ;
Venkatachalam, M ;
Lieberthal, W ;
Nigam, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 275 (05) :F623-F631
[8]  
Breen D, 1998, KIDNEY INT, V53, pS25
[9]   Setting standards for human embryonic stem cells [J].
Brivanlou, AH ;
Gage, FH ;
Jaenisch, R ;
Jessell, T ;
Melton, D ;
Rossant, J .
SCIENCE, 2003, 300 (5621) :913-+
[10]   Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells [J].
Buttery, LDK ;
Bourne, S ;
Xynos, JD ;
Wood, H ;
Hughes, FJ ;
Hughes, SPF ;
Episkopou, V ;
Polak, JM .
TISSUE ENGINEERING, 2001, 7 (01) :89-99